Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering
Descripción del Articulo
        The authors would like to CONCYTEC (Consejo Nacional de Ciencia, Tecnolog ıa e Innovacion Tecnoloogica ), FONDE- ´ CYT (Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico) ´and ANA (Autoridad Nacional del Agua) for satellite imagesand supporting this project
            
    
                        | Autores: | , | 
|---|---|
| Formato: | objeto de conferencia | 
| Fecha de Publicación: | 2018 | 
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación | 
| Repositorio: | CONCYTEC-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/705 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/705 https://doi.org/10.1109/LA-CCI.2017.8285729 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Weight information Artificial intelligence Classification (of information) Pattern recognition Gaussian dispersions Multispectral images Objective functions Satellite images Similarity between objects Unsupervised classification Unsupervised clustering Image segmentation https://purl.org/pe-repo/ocde/ford#1.02.00 | 
| id | CONC_bfa99ed2fe90e81c39d29d78bfd3f603 | 
|---|---|
| oai_identifier_str | oai:repositorio.concytec.gob.pe:20.500.12390/705 | 
| network_acronym_str | CONC | 
| network_name_str | CONCYTEC-Institucional | 
| repository_id_str | 4689 | 
| dc.title.none.fl_str_mv | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering | 
| title | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering | 
| spellingShingle | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering Mantilla S.C.L. Weight information Artificial intelligence Classification (of information) Pattern recognition Gaussian dispersions Multispectral images Objective functions Satellite images Similarity between objects Unsupervised classification Unsupervised clustering Image segmentation https://purl.org/pe-repo/ocde/ford#1.02.00 | 
| title_short | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering | 
| title_full | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering | 
| title_fullStr | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering | 
| title_full_unstemmed | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering | 
| title_sort | Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering | 
| author | Mantilla S.C.L. | 
| author_facet | Mantilla S.C.L. Yari Y. | 
| author_role | author | 
| author2 | Yari Y. | 
| author2_role | author | 
| dc.contributor.author.fl_str_mv | Mantilla S.C.L. Yari Y. | 
| dc.subject.none.fl_str_mv | Weight information | 
| topic | Weight information Artificial intelligence Classification (of information) Pattern recognition Gaussian dispersions Multispectral images Objective functions Satellite images Similarity between objects Unsupervised classification Unsupervised clustering Image segmentation https://purl.org/pe-repo/ocde/ford#1.02.00 | 
| dc.subject.es_PE.fl_str_mv | Artificial intelligence Classification (of information) Pattern recognition Gaussian dispersions Multispectral images Objective functions Satellite images Similarity between objects Unsupervised classification Unsupervised clustering Image segmentation | 
| dc.subject.ocde.none.fl_str_mv | https://purl.org/pe-repo/ocde/ford#1.02.00 | 
| description | The authors would like to CONCYTEC (Consejo Nacional de Ciencia, Tecnolog ıa e Innovacion Tecnoloogica ), FONDE- ´ CYT (Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico) ´and ANA (Autoridad Nacional del Agua) for satellite imagesand supporting this project | 
| publishDate | 2018 | 
| dc.date.accessioned.none.fl_str_mv | 2024-05-30T23:13:38Z | 
| dc.date.available.none.fl_str_mv | 2024-05-30T23:13:38Z | 
| dc.date.issued.fl_str_mv | 2018 | 
| dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject | 
| format | conferenceObject | 
| dc.identifier.isbn.none.fl_str_mv | 9781538637340 | 
| dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12390/705 | 
| dc.identifier.doi.none.fl_str_mv | https://doi.org/10.1109/LA-CCI.2017.8285729 | 
| dc.identifier.scopus.none.fl_str_mv | 2-s2.0-85050374001 | 
| identifier_str_mv | 9781538637340 2-s2.0-85050374001 | 
| url | https://hdl.handle.net/20.500.12390/705 https://doi.org/10.1109/LA-CCI.2017.8285729 | 
| dc.language.iso.none.fl_str_mv | eng | 
| language | eng | 
| dc.relation.ispartof.none.fl_str_mv | 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedings | 
| dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess | 
| eu_rights_str_mv | openAccess | 
| dc.publisher.none.fl_str_mv | Institute of Electrical and Electronics Engineers Inc. | 
| publisher.none.fl_str_mv | Institute of Electrical and Electronics Engineers Inc. | 
| dc.source.none.fl_str_mv | reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC | 
| instname_str | Consejo Nacional de Ciencia Tecnología e Innovación | 
| instacron_str | CONCYTEC | 
| institution | CONCYTEC | 
| reponame_str | CONCYTEC-Institucional | 
| collection | CONCYTEC-Institucional | 
| repository.name.fl_str_mv | Repositorio Institucional CONCYTEC | 
| repository.mail.fl_str_mv | repositorio@concytec.gob.pe | 
| _version_ | 1844883032842960896 | 
| spelling | Publicationrp01717600rp01718600Mantilla S.C.L.Yari Y.2024-05-30T23:13:38Z2024-05-30T23:13:38Z20189781538637340https://hdl.handle.net/20.500.12390/705https://doi.org/10.1109/LA-CCI.2017.82857292-s2.0-85050374001The authors would like to CONCYTEC (Consejo Nacional de Ciencia, Tecnolog ıa e Innovacion Tecnoloogica ), FONDE- ´ CYT (Fondo Nacional de Desarrollo Cient´ıfico y Tecnologico) ´and ANA (Autoridad Nacional del Agua) for satellite imagesand supporting this projectIn Pattern Recognition there are many algorithms it try to solve the problem of grouping objects of the same type, this is called clustering, however the task of dividing these lies not only in the objective function, but also the methodology used to calculate the similarity between objects. Because multispectral images contain information that has low statistical separation and a large amount of data it is necessary to enter local information. In this paper, the use of the Gaussian dispersion equation is proposed in order to calculate the contribution of each sample to the sample analyzed. The results show that the integration of local weights within the clustering model decreases the entropy of each group generated.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedingsinfo:eu-repo/semantics/openAccessWeight informationArtificial intelligence-1Classification (of information)-1Pattern recognition-1Gaussian dispersions-1Multispectral images-1Objective functions-1Satellite images-1Similarity between objects-1Unsupervised classification-1Unsupervised clustering-1Image segmentation-1https://purl.org/pe-repo/ocde/ford#1.02.00-1Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clusteringinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/705oai:repositorio.concytec.gob.pe:20.500.12390/7052024-05-30 15:22:41.97http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="cf7d202e-ea7d-4f84-aee8-03efce7e1d49"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Multispectral images segmentation using fuzzy probabilistic local cluster for unsupervised clustering</Title> <PublishedIn> <Publication> <Title>2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedings</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1109/LA-CCI.2017.8285729</DOI> <SCP-Number>2-s2.0-85050374001</SCP-Number> <ISBN>9781538637340</ISBN> <Authors> <Author> <DisplayName>Mantilla S.C.L.</DisplayName> <Person id="rp01717" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yari Y.</DisplayName> <Person id="rp01718" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Weight information</Keyword> <Keyword>Artificial intelligence</Keyword> <Keyword>Classification (of information)</Keyword> <Keyword>Pattern recognition</Keyword> <Keyword>Gaussian dispersions</Keyword> <Keyword>Multispectral images</Keyword> <Keyword>Objective functions</Keyword> <Keyword>Satellite images</Keyword> <Keyword>Similarity between objects</Keyword> <Keyword>Unsupervised classification</Keyword> <Keyword>Unsupervised clustering</Keyword> <Keyword>Image segmentation</Keyword> <Abstract>In Pattern Recognition there are many algorithms it try to solve the problem of grouping objects of the same type, this is called clustering, however the task of dividing these lies not only in the objective function, but also the methodology used to calculate the similarity between objects. Because multispectral images contain information that has low statistical separation and a large amount of data it is necessary to enter local information. In this paper, the use of the Gaussian dispersion equation is proposed in order to calculate the contribution of each sample to the sample analyzed. The results show that the integration of local weights within the clustering model decreases the entropy of each group generated.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 | 
| score | 13.402391 | 
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            