K-Nearest neighbor in a classification and prediction application in the Judicial Power of Peru

Descripción del Articulo

Abstract: This article summarizes the main contributions of the thesis with the title “K-Nearest neighbor in a classification and prediction application in the Judicial Power of Peru". In this thesis a model is constructed using the method of the nearest k-neighbors that allows classifying and...

Descripción completa

Detalles Bibliográficos
Autor: Quezada Lucio, Nel
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/15077
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15077
Nivel de acceso:acceso abierto
Materia:clasificación supervisada y no supervisada
k-vecinos más próximos
clasificación no paramétrica
partición
validación cruzada aleatoria.
supervised and unsupervised classification
nearest k-neighbors
nonparametric classification
partition
random cross-validation
Descripción
Sumario:Abstract: This article summarizes the main contributions of the thesis with the title “K-Nearest neighbor in a classification and prediction application in the Judicial Power of Peru". In this thesis a model is constructed using the method of the nearest k-neighbors that allows classifying and predicting the Superior Courts of Justice of Peru. Through a descriptive data analysis, the Lima Court is excluded from the study. With the remaining 30 Superior Courts, a three-group model based on unsupervised classification is generated, for which the Euclidean distance matrix that originates the classification tree is deduced. The classification model of three nearest neighbors is constructed, with partition and random cross-validation folds, which indicates; the predictor space model, the quadratic error or error index that validates the op-timal value of k = 3 neighbors, the model error and the global forecast index that measure the accuracy or accuracy of the model found, importance of the predictor, maps of quadrants and table of neighbors.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).