SHREC 2021: Retrieval of cultural heritage objects
Descripción del Articulo
This work has been partially supported by Proyecto de Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia, Tecnología e Innovación Tecnológica (Banco Mundial, Concytec), Nr. Grant 062-2018-FONDECYT-BM-IADT-AV. This work was supported by the European Commission (Bigmedilytics 7...
Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/3053 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/3053 https://doi.org/10.1016/j.cag.2021.07.010 |
Nivel de acceso: | acceso abierto |
Materia: | Cultural heritage 3D model retrieval Benchmarking https://purl.org/pe-repo/ocde/ford#5.08.04 |
id |
CONC_be56d4eb86d36d41d4ccdfa2d57aa297 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/3053 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
SHREC 2021: Retrieval of cultural heritage objects |
title |
SHREC 2021: Retrieval of cultural heritage objects |
spellingShingle |
SHREC 2021: Retrieval of cultural heritage objects Sipiran I. Cultural heritage 3D model retrieval Benchmarking https://purl.org/pe-repo/ocde/ford#5.08.04 |
title_short |
SHREC 2021: Retrieval of cultural heritage objects |
title_full |
SHREC 2021: Retrieval of cultural heritage objects |
title_fullStr |
SHREC 2021: Retrieval of cultural heritage objects |
title_full_unstemmed |
SHREC 2021: Retrieval of cultural heritage objects |
title_sort |
SHREC 2021: Retrieval of cultural heritage objects |
author |
Sipiran I. |
author_facet |
Sipiran I. Lazo P. Lopez C. Jimenez M. Bagewadi N. Bustos B. Dao H. Gangisetty S. Hanik M. Ho-Thi N.-P. Holenderski M. Jarnikov D. Labrada A. Lengauer S. Licandro R. Nguyen D.-H. Nguyen-Ho T.-L. Perez Rey L.A. Pham B.-D. Pham M.-K. Preiner R. Schreck T. Trinh Q.-H. Tonnaer L. von Tycowicz C. Vu-Le T.-A. |
author_role |
author |
author2 |
Lazo P. Lopez C. Jimenez M. Bagewadi N. Bustos B. Dao H. Gangisetty S. Hanik M. Ho-Thi N.-P. Holenderski M. Jarnikov D. Labrada A. Lengauer S. Licandro R. Nguyen D.-H. Nguyen-Ho T.-L. Perez Rey L.A. Pham B.-D. Pham M.-K. Preiner R. Schreck T. Trinh Q.-H. Tonnaer L. von Tycowicz C. Vu-Le T.-A. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Sipiran I. Lazo P. Lopez C. Jimenez M. Bagewadi N. Bustos B. Dao H. Gangisetty S. Hanik M. Ho-Thi N.-P. Holenderski M. Jarnikov D. Labrada A. Lengauer S. Licandro R. Nguyen D.-H. Nguyen-Ho T.-L. Perez Rey L.A. Pham B.-D. Pham M.-K. Preiner R. Schreck T. Trinh Q.-H. Tonnaer L. von Tycowicz C. Vu-Le T.-A. |
dc.subject.none.fl_str_mv |
Cultural heritage |
topic |
Cultural heritage 3D model retrieval Benchmarking https://purl.org/pe-repo/ocde/ford#5.08.04 |
dc.subject.es_PE.fl_str_mv |
3D model retrieval Benchmarking |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.08.04 |
description |
This work has been partially supported by Proyecto de Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia, Tecnología e Innovación Tecnológica (Banco Mundial, Concytec), Nr. Grant 062-2018-FONDECYT-BM-IADT-AV. This work was supported by the European Commission (Bigmedilytics 780495, TRABIT 765148), the Austrian Research Promotion Agency (FFG) - BRIDGE (grant number: 878730), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689), the Bundesministerium fuer Bildung und Forschung (BMBF) through BIFOLD - The Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A and ref 01IS18037A). This work has also received funding from the NWO-TTW Programme “Efficient Deep Learning”(EDL) P16-25. The-Anh Vu-Le was funded by Vingroup Joint Stock Company and supported by the Domestic Master/ PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data Institute (VINBIGDATA), code VINIF.2020.ThS.JVN.01. The HCMUS team was funded by Gia Lam Urban Development and Investment Company Limited, Vingroup and supported by Vingroup Innovation Foundation (VINIF) under project code VINIF.2019.DA19. This work was also co-funded by the Austrian Science Fund FWF and the State of Styria, Austria within the project Crossmodal Search and Visual Exploration of 3D Cultural Heritage Objects (P31317-NBL). |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/3053 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.cag.2021.07.010 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85111653912 |
url |
https://hdl.handle.net/20.500.12390/3053 https://doi.org/10.1016/j.cag.2021.07.010 |
identifier_str_mv |
2-s2.0-85111653912 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Computers and Graphics (Pergamon) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175780687413248 |
spelling |
Publicationrp06322600rp08762600rp08765600rp08774600rp08768600rp06301600rp08776600rp08769600rp08773600rp08770600rp08772600rp08767600rp08763600rp08764600rp08758600rp08771600rp08760600rp08756600rp08766600rp08757600rp08777600rp08754600rp08759600rp08755600rp08761600rp08775600Sipiran I.Lazo P.Lopez C.Jimenez M.Bagewadi N.Bustos B.Dao H.Gangisetty S.Hanik M.Ho-Thi N.-P.Holenderski M.Jarnikov D.Labrada A.Lengauer S.Licandro R.Nguyen D.-H.Nguyen-Ho T.-L.Perez Rey L.A.Pham B.-D.Pham M.-K.Preiner R.Schreck T.Trinh Q.-H.Tonnaer L.von Tycowicz C.Vu-Le T.-A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3053https://doi.org/10.1016/j.cag.2021.07.0102-s2.0-85111653912This work has been partially supported by Proyecto de Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia, Tecnología e Innovación Tecnológica (Banco Mundial, Concytec), Nr. Grant 062-2018-FONDECYT-BM-IADT-AV. This work was supported by the European Commission (Bigmedilytics 780495, TRABIT 765148), the Austrian Research Promotion Agency (FFG) - BRIDGE (grant number: 878730), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689), the Bundesministerium fuer Bildung und Forschung (BMBF) through BIFOLD - The Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A and ref 01IS18037A). This work has also received funding from the NWO-TTW Programme “Efficient Deep Learning”(EDL) P16-25. The-Anh Vu-Le was funded by Vingroup Joint Stock Company and supported by the Domestic Master/ PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data Institute (VINBIGDATA), code VINIF.2020.ThS.JVN.01. The HCMUS team was funded by Gia Lam Urban Development and Investment Company Limited, Vingroup and supported by Vingroup Innovation Foundation (VINIF) under project code VINIF.2019.DA19. This work was also co-funded by the Austrian Science Fund FWF and the State of Styria, Austria within the project Crossmodal Search and Visual Exploration of 3D Cultural Heritage Objects (P31317-NBL).This paper presents the methods and results of the SHREC’21 track on a dataset of cultural heritage (CH) objects. We present a dataset of 938 scanned models that have varied geometry and artistic styles. For the competition, we propose two challenges: the retrieval-by-shape challenge and the retrieval-by-culture challenge. The former aims at evaluating the ability of retrieval methods to discriminate cultural heritage objects by overall shape. The latter focuses on assessing the effectiveness of retrieving objects from the same culture. Both challenges constitute a suitable scenario to evaluate modern shape retrieval methods in a CH domain. Ten groups participated in the challenges: thirty runs were submitted for the retrieval-by-shape task, and twenty-six runs were submitted for the retrieval-by-culture task. The results show a predominance of learning methods on image-based multi-view representations to characterize 3D objects. Nevertheless, the problem presented in our challenges is far from being solved. We also identify the potential paths for further improvements and give insights into the future directions of research. © 2021 Elsevier LtdConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdComputers and Graphics (Pergamon)info:eu-repo/semantics/openAccessCultural heritage3D model retrieval-1Benchmarking-1https://purl.org/pe-repo/ocde/ford#5.08.04-1SHREC 2021: Retrieval of cultural heritage objectsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3053oai:repositorio.concytec.gob.pe:20.500.12390/30532024-05-30 16:13:32.91http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="dedc56ea-e1e6-431d-bbea-f353cfe43667"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>SHREC 2021: Retrieval of cultural heritage objects</Title> <PublishedIn> <Publication> <Title>Computers and Graphics (Pergamon)</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.cag.2021.07.010</DOI> <SCP-Number>2-s2.0-85111653912</SCP-Number> <Authors> <Author> <DisplayName>Sipiran I.</DisplayName> <Person id="rp06322" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lazo P.</DisplayName> <Person id="rp08762" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lopez C.</DisplayName> <Person id="rp08765" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Jimenez M.</DisplayName> <Person id="rp08774" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bagewadi N.</DisplayName> <Person id="rp08768" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bustos B.</DisplayName> <Person id="rp06301" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dao H.</DisplayName> <Person id="rp08776" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gangisetty S.</DisplayName> <Person id="rp08769" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Hanik M.</DisplayName> <Person id="rp08773" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ho-Thi N.-P.</DisplayName> <Person id="rp08770" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Holenderski M.</DisplayName> <Person id="rp08772" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Jarnikov D.</DisplayName> <Person id="rp08767" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Labrada A.</DisplayName> <Person id="rp08763" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lengauer S.</DisplayName> <Person id="rp08764" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Licandro R.</DisplayName> <Person id="rp08758" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nguyen D.-H.</DisplayName> <Person id="rp08771" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nguyen-Ho T.-L.</DisplayName> <Person id="rp08760" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perez Rey L.A.</DisplayName> <Person id="rp08756" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pham B.-D.</DisplayName> <Person id="rp08766" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pham M.-K.</DisplayName> <Person id="rp08757" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Preiner R.</DisplayName> <Person id="rp08777" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Schreck T.</DisplayName> <Person id="rp08754" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Trinh Q.-H.</DisplayName> <Person id="rp08759" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tonnaer L.</DisplayName> <Person id="rp08755" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>von Tycowicz C.</DisplayName> <Person id="rp08761" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vu-Le T.-A.</DisplayName> <Person id="rp08775" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Cultural heritage</Keyword> <Keyword>3D model retrieval</Keyword> <Keyword>Benchmarking</Keyword> <Abstract>This paper presents the methods and results of the SHREC’21 track on a dataset of cultural heritage (CH) objects. We present a dataset of 938 scanned models that have varied geometry and artistic styles. For the competition, we propose two challenges: the retrieval-by-shape challenge and the retrieval-by-culture challenge. The former aims at evaluating the ability of retrieval methods to discriminate cultural heritage objects by overall shape. The latter focuses on assessing the effectiveness of retrieving objects from the same culture. Both challenges constitute a suitable scenario to evaluate modern shape retrieval methods in a CH domain. Ten groups participated in the challenges: thirty runs were submitted for the retrieval-by-shape task, and twenty-six runs were submitted for the retrieval-by-culture task. The results show a predominance of learning methods on image-based multi-view representations to characterize 3D objects. Nevertheless, the problem presented in our challenges is far from being solved. We also identify the potential paths for further improvements and give insights into the future directions of research. © 2021 Elsevier Ltd</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).