Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment

Descripción del Articulo

Construction support also was granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Additional support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by Proyecto Basal F...

Descripción completa

Detalles Bibliográficos
Autores: Nuruzzaman, Perdue G.N., Ghosh A., Wospakrik M., Akbar F., Andrade D.A., Ascencio M., Bellantoni L., Bercellie A., Betancourt M., Vera G.F.R.C., Cai T., Carneiro M.F., Chaves J., Coplowe D., Motta H.D., Díaz G.A., Felix J., Fields L., Fine R., Gago A.M., Galindo R., Golan T., Gran R., Han J.Y., Harris D.A., Jena D., Kleykamp J., Kordosky M., Lu X.-G., Maher E., Mann W.A., Marshall C.M., McFarland K.S., McGowan A.M., Messerly B., Miller J., Nelson J.K., Nguyen C., Norrick A., Nuruzzaman N., Olivier A., Patton R., Ramírez M.A., Ransome R.D., Ray H., Ren L., Rimal D., Ruterbories D., Schellman H., Salinas C.J.S., Su H., Upadhyay S., Valencia E., Wolcott J., Yaeggy B., Young S.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/587
Enlace del recurso:https://hdl.handle.net/20.500.12390/587
https://doi.org/10.1088/1748-0221/13/11/P11020
Nivel de acceso:acceso abierto
Materia:Physics programs
Neural networks
Neutrons
Pattern recognition
Deep convolutional neural networks
Learning classifiers
Learning-based methods
Neutrino detectors
Neutrino interactions
Performance degradation
https://purl.org/pe-repo/ocde/ford#3.01.00
id CONC_b602fbbb178af9f0fdc133aac690813b
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/587
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
title Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
spellingShingle Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
Nuruzzaman
Physics programs
Neural networks
Neutrons
Pattern recognition
Deep convolutional neural networks
Learning classifiers
Learning-based methods
Neutrino detectors
Neutrino interactions
Performance degradation
https://purl.org/pe-repo/ocde/ford#3.01.00
title_short Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
title_full Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
title_fullStr Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
title_full_unstemmed Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
title_sort Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
author Nuruzzaman
author_facet Nuruzzaman
Perdue G.N.
Ghosh A.
Wospakrik M.
Akbar F.
Andrade D.A.
Ascencio M.
Bellantoni L.
Bercellie A.
Betancourt M.
Vera G.F.R.C.
Cai T.
Carneiro M.F.
Chaves J.
Coplowe D.
Motta H.D.
Díaz G.A.
Felix J.
Fields L.
Fine R.
Gago A.M.
Galindo R.
Golan T.
Gran R.
Han J.Y.
Harris D.A.
Jena D.
Kleykamp J.
Kordosky M.
Lu X.-G.
Maher E.
Mann W.A.
Marshall C.M.
McFarland K.S.
McGowan A.M.
Messerly B.
Miller J.
Nelson J.K.
Nguyen C.
Norrick A.
Nuruzzaman N.
Olivier A.
Patton R.
Ramírez M.A.
Ransome R.D.
Ray H.
Ren L.
Rimal D.
Ruterbories D.
Schellman H.
Salinas C.J.S.
Su H.
Upadhyay S.
Valencia E.
Wolcott J.
Yaeggy B.
Young S.
author_role author
author2 Perdue G.N.
Ghosh A.
Wospakrik M.
Akbar F.
Andrade D.A.
Ascencio M.
Bellantoni L.
Bercellie A.
Betancourt M.
Vera G.F.R.C.
Cai T.
Carneiro M.F.
Chaves J.
Coplowe D.
Motta H.D.
Díaz G.A.
Felix J.
Fields L.
Fine R.
Gago A.M.
Galindo R.
Golan T.
Gran R.
Han J.Y.
Harris D.A.
Jena D.
Kleykamp J.
Kordosky M.
Lu X.-G.
Maher E.
Mann W.A.
Marshall C.M.
McFarland K.S.
McGowan A.M.
Messerly B.
Miller J.
Nelson J.K.
Nguyen C.
Norrick A.
Nuruzzaman N.
Olivier A.
Patton R.
Ramírez M.A.
Ransome R.D.
Ray H.
Ren L.
Rimal D.
Ruterbories D.
Schellman H.
Salinas C.J.S.
Su H.
Upadhyay S.
Valencia E.
Wolcott J.
Yaeggy B.
Young S.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Nuruzzaman
Perdue G.N.
Ghosh A.
Wospakrik M.
Akbar F.
Andrade D.A.
Ascencio M.
Bellantoni L.
Bercellie A.
Betancourt M.
Vera G.F.R.C.
Cai T.
Carneiro M.F.
Chaves J.
Coplowe D.
Motta H.D.
Díaz G.A.
Felix J.
Fields L.
Fine R.
Gago A.M.
Galindo R.
Golan T.
Gran R.
Han J.Y.
Harris D.A.
Jena D.
Kleykamp J.
Kordosky M.
Lu X.-G.
Maher E.
Mann W.A.
Marshall C.M.
McFarland K.S.
McGowan A.M.
Messerly B.
Miller J.
Nelson J.K.
Nguyen C.
Norrick A.
Nuruzzaman N.
Olivier A.
Patton R.
Ramírez M.A.
Ransome R.D.
Ray H.
Ren L.
Rimal D.
Ruterbories D.
Schellman H.
Salinas C.J.S.
Su H.
Upadhyay S.
Valencia E.
Wolcott J.
Yaeggy B.
Young S.
dc.subject.none.fl_str_mv Physics programs
topic Physics programs
Neural networks
Neutrons
Pattern recognition
Deep convolutional neural networks
Learning classifiers
Learning-based methods
Neutrino detectors
Neutrino interactions
Performance degradation
https://purl.org/pe-repo/ocde/ford#3.01.00
dc.subject.es_PE.fl_str_mv Neural networks
Neutrons
Pattern recognition
Deep convolutional neural networks
Learning classifiers
Learning-based methods
Neutrino detectors
Neutrino interactions
Performance degradation
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.01.00
description Construction support also was granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Additional support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by Proyecto Basal FB 0821, CONICYT PIA ACT1413, Fondecyt 3170845 and 11130133 (Chile), by PIIC (DGIP-UTFSM), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru)
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/587
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1088/1748-0221/13/11/P11020
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85057619219
url https://hdl.handle.net/20.500.12390/587
https://doi.org/10.1088/1748-0221/13/11/P11020
identifier_str_mv 2-s2.0-85057619219
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Instrumentation
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Physics Publishing
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883058951454720
spelling Publicationrp00755500rp00806500rp00787500rp00782500rp00805500rp00803500rp01138600rp00818500rp00801500rp00807500rp00792500rp00756500rp00761500rp01133600rp00785500rp01139600rp00797500rp00774500rp00791500rp00813500rp00854500rp01060500rp01057500rp00784500rp00753500rp00775500rp00777500rp00815500rp00794500rp00798500rp00783500rp00814500rp00786500rp00779500rp00817500rp00793500rp00768500rp00780500rp00788500rp00754500rp01136600rp00767500rp01134600rp00795500rp00802500rp00766500rp00763500rp00804500rp00778500rp00773500rp00809500rp00752500rp01137600rp00796500rp00822500rp00816500rp01135600NuruzzamanPerdue G.N.Ghosh A.Wospakrik M.Akbar F.Andrade D.A.Ascencio M.Bellantoni L.Bercellie A.Betancourt M.Vera G.F.R.C.Cai T.Carneiro M.F.Chaves J.Coplowe D.Motta H.D.Díaz G.A.Felix J.Fields L.Fine R.Gago A.M.Galindo R.Golan T.Gran R.Han J.Y.Harris D.A.Jena D.Kleykamp J.Kordosky M.Lu X.-G.Maher E.Mann W.A.Marshall C.M.McFarland K.S.McGowan A.M.Messerly B.Miller J.Nelson J.K.Nguyen C.Norrick A.Nuruzzaman N.Olivier A.Patton R.Ramírez M.A.Ransome R.D.Ray H.Ren L.Rimal D.Ruterbories D.Schellman H.Salinas C.J.S.Su H.Upadhyay S.Valencia E.Wolcott J.Yaeggy B.Young S.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/587https://doi.org/10.1088/1748-0221/13/11/P110202-s2.0-85057619219Construction support also was granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Additional support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by Proyecto Basal FB 0821, CONICYT PIA ACT1413, Fondecyt 3170845 and 11130133 (Chile), by PIIC (DGIP-UTFSM), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru)We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from the second domain so that during training only features which are unable to discriminate between the domains are promoted. MINERvA is a neutrino-nucleus scattering experiment using the NuMI beamline at Fermilab. A-dependent cross sections are an important part of the physics program, and these measurements require vertex finding in complicated events. To illustrate the impact of the DANN we used a modified set of simulation in place of physics data during the training of the DANN and then used the label of the modified simulation during the evaluation of the DANN. We find that deep learning based methods offer significant advantages over our prior track-based reconstruction for the task of vertex finding, and that DANNs are able to improve the performance of deep networks by leveraging available unlabeled data and by mitigating network performance degradation rooted in biases in the physics models used for training.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Physics PublishingJournal of Instrumentationinfo:eu-repo/semantics/openAccessPhysics programsNeural networks-1Neutrons-1Pattern recognition-1Deep convolutional neural networks-1Learning classifiers-1Learning-based methods-1Neutrino detectors-1Neutrino interactions-1Performance degradation-1https://purl.org/pe-repo/ocde/ford#3.01.00-1Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experimentinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/587oai:repositorio.concytec.gob.pe:20.500.12390/5872024-05-30 15:58:08.405http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="1a36c8cf-0855-409e-8538-920fc2aaf966"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment</Title> <PublishedIn> <Publication> <Title>Journal of Instrumentation</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1088/1748-0221/13/11/P11020</DOI> <SCP-Number>2-s2.0-85057619219</SCP-Number> <Authors> <Author> <DisplayName>Nuruzzaman</DisplayName> <Person id="rp00755" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Perdue G.N.</DisplayName> <Person id="rp00806" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ghosh A.</DisplayName> <Person id="rp00787" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wospakrik M.</DisplayName> <Person id="rp00782" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Akbar F.</DisplayName> <Person id="rp00805" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Andrade D.A.</DisplayName> <Person id="rp00803" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ascencio M.</DisplayName> <Person id="rp01138" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bellantoni L.</DisplayName> <Person id="rp00818" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Bercellie A.</DisplayName> <Person id="rp00801" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Betancourt M.</DisplayName> <Person id="rp00807" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vera G.F.R.C.</DisplayName> <Person id="rp00792" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cai T.</DisplayName> <Person id="rp00756" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Carneiro M.F.</DisplayName> <Person id="rp00761" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Chaves J.</DisplayName> <Person id="rp01133" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coplowe D.</DisplayName> <Person id="rp00785" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Motta H.D.</DisplayName> <Person id="rp01139" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Díaz G.A.</DisplayName> <Person id="rp00797" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Felix J.</DisplayName> <Person id="rp00774" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Fields L.</DisplayName> <Person id="rp00791" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Fine R.</DisplayName> <Person id="rp00813" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gago A.M.</DisplayName> <Person id="rp00854" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Galindo R.</DisplayName> <Person id="rp01060" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Golan T.</DisplayName> <Person id="rp01057" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gran R.</DisplayName> <Person id="rp00784" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Han J.Y.</DisplayName> <Person id="rp00753" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Harris D.A.</DisplayName> <Person id="rp00775" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Jena D.</DisplayName> <Person id="rp00777" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kleykamp J.</DisplayName> <Person id="rp00815" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kordosky M.</DisplayName> <Person id="rp00794" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lu X.-G.</DisplayName> <Person id="rp00798" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Maher E.</DisplayName> <Person id="rp00783" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mann W.A.</DisplayName> <Person id="rp00814" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Marshall C.M.</DisplayName> <Person id="rp00786" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>McFarland K.S.</DisplayName> <Person id="rp00779" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>McGowan A.M.</DisplayName> <Person id="rp00817" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Messerly B.</DisplayName> <Person id="rp00793" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Miller J.</DisplayName> <Person id="rp00768" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nelson J.K.</DisplayName> <Person id="rp00780" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nguyen C.</DisplayName> <Person id="rp00788" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Norrick A.</DisplayName> <Person id="rp00754" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nuruzzaman N.</DisplayName> <Person id="rp01136" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Olivier A.</DisplayName> <Person id="rp00767" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Patton R.</DisplayName> <Person id="rp01134" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ramírez M.A.</DisplayName> <Person id="rp00795" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ransome R.D.</DisplayName> <Person id="rp00802" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ray H.</DisplayName> <Person id="rp00766" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ren L.</DisplayName> <Person id="rp00763" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rimal D.</DisplayName> <Person id="rp00804" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ruterbories D.</DisplayName> <Person id="rp00778" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Schellman H.</DisplayName> <Person id="rp00773" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Salinas C.J.S.</DisplayName> <Person id="rp00809" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Su H.</DisplayName> <Person id="rp00752" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Upadhyay S.</DisplayName> <Person id="rp01137" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Valencia E.</DisplayName> <Person id="rp00796" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Wolcott J.</DisplayName> <Person id="rp00822" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yaeggy B.</DisplayName> <Person id="rp00816" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Young S.</DisplayName> <Person id="rp01135" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Physics Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Physics programs</Keyword> <Keyword>Neural networks</Keyword> <Keyword>Neutrons</Keyword> <Keyword>Pattern recognition</Keyword> <Keyword>Deep convolutional neural networks</Keyword> <Keyword>Learning classifiers</Keyword> <Keyword>Learning-based methods</Keyword> <Keyword>Neutrino detectors</Keyword> <Keyword>Neutrino interactions</Keyword> <Keyword>Performance degradation</Keyword> <Abstract>We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from the second domain so that during training only features which are unable to discriminate between the domains are promoted. MINERvA is a neutrino-nucleus scattering experiment using the NuMI beamline at Fermilab. A-dependent cross sections are an important part of the physics program, and these measurements require vertex finding in complicated events. To illustrate the impact of the DANN we used a modified set of simulation in place of physics data during the training of the DANN and then used the label of the modified simulation during the evaluation of the DANN. We find that deep learning based methods offer significant advantages over our prior track-based reconstruction for the task of vertex finding, and that DANNs are able to improve the performance of deep networks by leveraging available unlabeled data and by mitigating network performance degradation rooted in biases in the physics models used for training.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.476704
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).