Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes

Descripción del Articulo

A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold...

Descripción completa

Detalles Bibliográficos
Autores: Ramos, Tony Liedyn Choque, Vargas, Alex Jesus Cuadros
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1320
Enlace del recurso:https://hdl.handle.net/20.500.12390/1320
https://doi.org/10.1109/sibgrapi.2017.12
Nivel de acceso:acceso abierto
Materia:Manifold
Computational Geometry
Computer Graphics
https://purl.org/pe-repo/ocde/ford#2.00.00
id CONC_9e6c51668395f3ae2116624f4047a8dc
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1320
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
title Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
spellingShingle Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
Ramos, Tony Liedyn Choque
Manifold
Computational Geometry
Computer Graphics
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
title_full Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
title_fullStr Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
title_full_unstemmed Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
title_sort Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
author Ramos, Tony Liedyn Choque
author_facet Ramos, Tony Liedyn Choque
Vargas, Alex Jesus Cuadros
author_role author
author2 Vargas, Alex Jesus Cuadros
author2_role author
dc.contributor.author.fl_str_mv Ramos, Tony Liedyn Choque
Vargas, Alex Jesus Cuadros
dc.subject.none.fl_str_mv Manifold
topic Manifold
Computational Geometry
Computer Graphics
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.es_PE.fl_str_mv Computational Geometry
Computer Graphics
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold boundaries. Current methods modify the topology, geometry or both, using their own data structures. The problem of modifying the topology is that if the mesh has to be post-processed, for instance with the Delaunay refinement, the mesh becomes unsuitable. In this paper, we propose alternatives to repair non-manifold boundaries of segmented simplicial meshes, among them is the Delaunay based one, we use common data structures and only consider 2 and 3 dimensions. We developed algorithms for this purpose, composed of the following tools: relabeling, point insertion and simulated annealing. These algorithms are applied depending on the targeted contexts, if we want to speed the process, keep as possible the original segmented mesh or keep the number of elements in the mesh.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1320
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/sibgrapi.2017.12
url https://hdl.handle.net/20.500.12390/1320
https://doi.org/10.1109/sibgrapi.2017.12
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844882999110270976
spelling Publicationrp03840600rp03841600Ramos, Tony Liedyn ChoqueVargas, Alex Jesus Cuadros2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017-10https://hdl.handle.net/20.500.12390/1320https://doi.org/10.1109/sibgrapi.2017.12A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold boundaries. Current methods modify the topology, geometry or both, using their own data structures. The problem of modifying the topology is that if the mesh has to be post-processed, for instance with the Delaunay refinement, the mesh becomes unsuitable. In this paper, we propose alternatives to repair non-manifold boundaries of segmented simplicial meshes, among them is the Delaunay based one, we use common data structures and only consider 2 and 3 dimensions. We developed algorithms for this purpose, composed of the following tools: relabeling, point insertion and simulated annealing. These algorithms are applied depending on the targeted contexts, if we want to speed the process, keep as possible the original segmented mesh or keep the number of elements in the mesh.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)info:eu-repo/semantics/openAccessManifoldComputational Geometry-1Computer Graphics-1https://purl.org/pe-repo/ocde/ford#2.00.00-1Repairing Non-Manifold Boundaries of Segmented Simplicial Meshesinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1320oai:repositorio.concytec.gob.pe:20.500.12390/13202024-05-30 16:02:43.758http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8ef62eaf-c2cb-400e-b0cc-7d538abe9517"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes</Title> <PublishedIn> <Publication> <Title>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)</Title> </Publication> </PublishedIn> <PublicationDate>2017-10</PublicationDate> <DOI>https://doi.org/10.1109/sibgrapi.2017.12</DOI> <Authors> <Author> <DisplayName>Ramos, Tony Liedyn Choque</DisplayName> <Person id="rp03840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vargas, Alex Jesus Cuadros</DisplayName> <Person id="rp03841" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Manifold</Keyword> <Keyword>Computational Geometry</Keyword> <Keyword>Computer Graphics</Keyword> <Abstract>A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold boundaries. Current methods modify the topology, geometry or both, using their own data structures. The problem of modifying the topology is that if the mesh has to be post-processed, for instance with the Delaunay refinement, the mesh becomes unsuitable. In this paper, we propose alternatives to repair non-manifold boundaries of segmented simplicial meshes, among them is the Delaunay based one, we use common data structures and only consider 2 and 3 dimensions. We developed algorithms for this purpose, composed of the following tools: relabeling, point insertion and simulated annealing. These algorithms are applied depending on the targeted contexts, if we want to speed the process, keep as possible the original segmented mesh or keep the number of elements in the mesh.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.277489
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).