Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes
Descripción del Articulo
A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold...
Autores: | , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1320 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1320 https://doi.org/10.1109/sibgrapi.2017.12 |
Nivel de acceso: | acceso abierto |
Materia: | Manifold Computational Geometry Computer Graphics https://purl.org/pe-repo/ocde/ford#2.00.00 |
id |
CONC_9e6c51668395f3ae2116624f4047a8dc |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1320 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes |
title |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes |
spellingShingle |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes Ramos, Tony Liedyn Choque Manifold Computational Geometry Computer Graphics https://purl.org/pe-repo/ocde/ford#2.00.00 |
title_short |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes |
title_full |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes |
title_fullStr |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes |
title_full_unstemmed |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes |
title_sort |
Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes |
author |
Ramos, Tony Liedyn Choque |
author_facet |
Ramos, Tony Liedyn Choque Vargas, Alex Jesus Cuadros |
author_role |
author |
author2 |
Vargas, Alex Jesus Cuadros |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ramos, Tony Liedyn Choque Vargas, Alex Jesus Cuadros |
dc.subject.none.fl_str_mv |
Manifold |
topic |
Manifold Computational Geometry Computer Graphics https://purl.org/pe-repo/ocde/ford#2.00.00 |
dc.subject.es_PE.fl_str_mv |
Computational Geometry Computer Graphics |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
description |
A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold boundaries. Current methods modify the topology, geometry or both, using their own data structures. The problem of modifying the topology is that if the mesh has to be post-processed, for instance with the Delaunay refinement, the mesh becomes unsuitable. In this paper, we propose alternatives to repair non-manifold boundaries of segmented simplicial meshes, among them is the Delaunay based one, we use common data structures and only consider 2 and 3 dimensions. We developed algorithms for this purpose, composed of the following tools: relabeling, point insertion and simulated annealing. These algorithms are applied depending on the targeted contexts, if we want to speed the process, keep as possible the original segmented mesh or keep the number of elements in the mesh. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1320 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/sibgrapi.2017.12 |
url |
https://hdl.handle.net/20.500.12390/1320 https://doi.org/10.1109/sibgrapi.2017.12 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844882999110270976 |
spelling |
Publicationrp03840600rp03841600Ramos, Tony Liedyn ChoqueVargas, Alex Jesus Cuadros2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017-10https://hdl.handle.net/20.500.12390/1320https://doi.org/10.1109/sibgrapi.2017.12A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold boundaries. Current methods modify the topology, geometry or both, using their own data structures. The problem of modifying the topology is that if the mesh has to be post-processed, for instance with the Delaunay refinement, the mesh becomes unsuitable. In this paper, we propose alternatives to repair non-manifold boundaries of segmented simplicial meshes, among them is the Delaunay based one, we use common data structures and only consider 2 and 3 dimensions. We developed algorithms for this purpose, composed of the following tools: relabeling, point insertion and simulated annealing. These algorithms are applied depending on the targeted contexts, if we want to speed the process, keep as possible the original segmented mesh or keep the number of elements in the mesh.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengIEEE2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)info:eu-repo/semantics/openAccessManifoldComputational Geometry-1Computer Graphics-1https://purl.org/pe-repo/ocde/ford#2.00.00-1Repairing Non-Manifold Boundaries of Segmented Simplicial Meshesinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1320oai:repositorio.concytec.gob.pe:20.500.12390/13202024-05-30 16:02:43.758http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8ef62eaf-c2cb-400e-b0cc-7d538abe9517"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Repairing Non-Manifold Boundaries of Segmented Simplicial Meshes</Title> <PublishedIn> <Publication> <Title>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)</Title> </Publication> </PublishedIn> <PublicationDate>2017-10</PublicationDate> <DOI>https://doi.org/10.1109/sibgrapi.2017.12</DOI> <Authors> <Author> <DisplayName>Ramos, Tony Liedyn Choque</DisplayName> <Person id="rp03840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vargas, Alex Jesus Cuadros</DisplayName> <Person id="rp03841" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Manifold</Keyword> <Keyword>Computational Geometry</Keyword> <Keyword>Computer Graphics</Keyword> <Abstract>A digital image may contain objects that can be made up of multiple regions concerning different material properties, physical or chemical attributes. Thus, segmented simplicial meshes with non-manifold boundaries are generated to represent the partitioned regions. We focus on repairing non-manifold boundaries. Current methods modify the topology, geometry or both, using their own data structures. The problem of modifying the topology is that if the mesh has to be post-processed, for instance with the Delaunay refinement, the mesh becomes unsuitable. In this paper, we propose alternatives to repair non-manifold boundaries of segmented simplicial meshes, among them is the Delaunay based one, we use common data structures and only consider 2 and 3 dimensions. We developed algorithms for this purpose, composed of the following tools: relabeling, point insertion and simulated annealing. These algorithms are applied depending on the targeted contexts, if we want to speed the process, keep as possible the original segmented mesh or keep the number of elements in the mesh.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.277489 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).