Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas
Descripción del Articulo
Acknowledgment. The authors gratefully acknowledge financial support by Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt) -Mundial Bank (Grant: 50-2018-FONDECYT-BM-IADT-MU).
| Autores: | , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2985 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2985 https://doi.org/10.1007/978-3-030-76228-5_12 |
| Nivel de acceso: | acceso abierto |
| Materia: | Spatial prediction Air quality Machine learning PM2.5 https://purl.org/pe-repo/ocde/ford#2.03.04 |
| id |
CONC_90e3a518acbbb580ac55685f7dfc9d4a |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2985 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas |
| title |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas |
| spellingShingle |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas Vargas-Campos I.R. Spatial prediction Air quality Machine learning PM2.5 https://purl.org/pe-repo/ocde/ford#2.03.04 |
| title_short |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas |
| title_full |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas |
| title_fullStr |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas |
| title_full_unstemmed |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas |
| title_sort |
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas |
| author |
Vargas-Campos I.R. |
| author_facet |
Vargas-Campos I.R. Villanueva E. |
| author_role |
author |
| author2 |
Villanueva E. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Vargas-Campos I.R. Villanueva E. |
| dc.subject.none.fl_str_mv |
Spatial prediction |
| topic |
Spatial prediction Air quality Machine learning PM2.5 https://purl.org/pe-repo/ocde/ford#2.03.04 |
| dc.subject.es_PE.fl_str_mv |
Air quality Machine learning PM2.5 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.03.04 |
| description |
Acknowledgment. The authors gratefully acknowledge financial support by Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt) -Mundial Bank (Grant: 50-2018-FONDECYT-BM-IADT-MU). |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2985 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-76228-5_12 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85111111277 |
| url |
https://hdl.handle.net/20.500.12390/2985 https://doi.org/10.1007/978-3-030-76228-5_12 |
| identifier_str_mv |
2-s2.0-85111111277 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Communications in Computer and Information Science |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| publisher.none.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883047747420160 |
| spelling |
Publicationrp08462600rp08463600Vargas-Campos I.R.Villanueva E.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2985https://doi.org/10.1007/978-3-030-76228-5_122-s2.0-85111111277Acknowledgment. The authors gratefully acknowledge financial support by Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt) -Mundial Bank (Grant: 50-2018-FONDECYT-BM-IADT-MU).Having accurate spatial prediction models of air pollutant concentrations can be very helpful to alleviate the shortage of monitoring stations, specially in low-to-middle income countries. However, given the large diversity of model types, both statistical, numerical and machine learning (ML) based, it is not clear which of them are most suitable for this task. In this paper we study the predictive capabilities of common machine learning methods for the spatial prediction of PM2.5 concentration level. Three relevant factors were scrutinized: the extent to which meteorological variables impact the prediction performance; the effect of variable normalization by inverse distance weighting (IDW); and the number of neighborhood stations needed to maximize predictive performance. Results in a dataset from Beijing monitoring network show that simple models like Linear Regresors trained on IDW normalized variables can cope with this task. Some knowledge have been derived to guide the construction of competent models for spatial prediction of PM2.5 concentrations with ML-based methods. © 2021, Springer Nature Switzerland AG.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer Science and Business Media Deutschland GmbHCommunications in Computer and Information Scienceinfo:eu-repo/semantics/openAccessSpatial predictionAir quality-1Machine learning-1PM2.5-1https://purl.org/pe-repo/ocde/ford#2.03.04-1Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areasinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2985oai:repositorio.concytec.gob.pe:20.500.12390/29852024-05-30 16:12:50.354http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f30bb911-e858-4ae8-a335-1da038362c65"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas</Title> <PublishedIn> <Publication> <Title>Communications in Computer and Information Science</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-76228-5_12</DOI> <SCP-Number>2-s2.0-85111111277</SCP-Number> <Authors> <Author> <DisplayName>Vargas-Campos I.R.</DisplayName> <Person id="rp08462" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villanueva E.</DisplayName> <Person id="rp08463" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Science and Business Media Deutschland GmbH</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Spatial prediction</Keyword> <Keyword>Air quality</Keyword> <Keyword>Machine learning</Keyword> <Keyword>PM2.5</Keyword> <Abstract>Having accurate spatial prediction models of air pollutant concentrations can be very helpful to alleviate the shortage of monitoring stations, specially in low-to-middle income countries. However, given the large diversity of model types, both statistical, numerical and machine learning (ML) based, it is not clear which of them are most suitable for this task. In this paper we study the predictive capabilities of common machine learning methods for the spatial prediction of PM2.5 concentration level. Three relevant factors were scrutinized: the extent to which meteorological variables impact the prediction performance; the effect of variable normalization by inverse distance weighting (IDW); and the number of neighborhood stations needed to maximize predictive performance. Results in a dataset from Beijing monitoring network show that simple models like Linear Regresors trained on IDW normalized variables can cope with this task. Some knowledge have been derived to guide the construction of competent models for spatial prediction of PM2.5 concentrations with ML-based methods. © 2021, Springer Nature Switzerland AG.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).