On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets
Descripción del Articulo
Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, ther...
| Autores: | , , |
|---|---|
| Formato: | capítulo de libro |
| Fecha de Publicación: | 2018 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1310 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/1310 https://doi.org/10.1007/978-3-319-75193-1_54 |
| Nivel de acceso: | acceso abierto |
| Materia: | Multidimensional index Approximate similarity search Fractal theory Deep learning https://purl.org/pe-repo/ocde/ford#5.08.02 |
| id |
CONC_8c00605f2f8ba7a53d86f9b9ce4c306e |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1310 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp03688500rp03692500rp00298500Ocsa, AlexanderHuillca, Jose LuisLopez del Alamo, Cristian2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/1310https://doi.org/10.1007/978-3-319-75193-1_54Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for heavy training process to achieve accurate query results and the critical dependency on data-parameters.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer International PublishingProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Scienceinfo:eu-repo/semantics/openAccessMultidimensional indexApproximate similarity search-1Fractal theory-1Deep learning-1https://purl.org/pe-repo/ocde/ford#5.08.02-1On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasetsinfo:eu-repo/semantics/bookPartreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1310oai:repositorio.concytec.gob.pe:20.500.12390/13102024-05-30 15:52:00.913http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="db5590ab-40da-4048-b48f-5d384a7060b6"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets</Title> <PublishedIn> <Publication> <Title>Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Science</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1007/978-3-319-75193-1_54</DOI> <Authors> <Author> <DisplayName>Ocsa, Alexander</DisplayName> <Person id="rp03688" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Huillca, Jose Luis</DisplayName> <Person id="rp03692" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lopez del Alamo, Cristian</DisplayName> <Person id="rp00298" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer International Publishing</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Multidimensional index</Keyword> <Keyword>Approximate similarity search</Keyword> <Keyword>Fractal theory</Keyword> <Keyword>Deep learning</Keyword> <Abstract>Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for heavy training process to achieve accurate query results and the critical dependency on data-parameters.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets |
| title |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets |
| spellingShingle |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets Ocsa, Alexander Multidimensional index Approximate similarity search Fractal theory Deep learning https://purl.org/pe-repo/ocde/ford#5.08.02 |
| title_short |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets |
| title_full |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets |
| title_fullStr |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets |
| title_full_unstemmed |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets |
| title_sort |
On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets |
| author |
Ocsa, Alexander |
| author_facet |
Ocsa, Alexander Huillca, Jose Luis Lopez del Alamo, Cristian |
| author_role |
author |
| author2 |
Huillca, Jose Luis Lopez del Alamo, Cristian |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Ocsa, Alexander Huillca, Jose Luis Lopez del Alamo, Cristian |
| dc.subject.none.fl_str_mv |
Multidimensional index |
| topic |
Multidimensional index Approximate similarity search Fractal theory Deep learning https://purl.org/pe-repo/ocde/ford#5.08.02 |
| dc.subject.es_PE.fl_str_mv |
Approximate similarity search Fractal theory Deep learning |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.08.02 |
| description |
Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for heavy training process to achieve accurate query results and the critical dependency on data-parameters. |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2018 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart |
| format |
bookPart |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1310 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-319-75193-1_54 |
| url |
https://hdl.handle.net/20.500.12390/1310 https://doi.org/10.1007/978-3-319-75193-1_54 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Science |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Springer International Publishing |
| publisher.none.fl_str_mv |
Springer International Publishing |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883037550018560 |
| score |
13.434648 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).