On Semantic Solutions for Efficient Approximate Similarity Search on Large-Scale Datasets

Descripción del Articulo

Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, ther...

Descripción completa

Detalles Bibliográficos
Autores: Ocsa, Alexander, Huillca, Jose Luis, Lopez del Alamo, Cristian
Formato: capítulo de libro
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1310
Enlace del recurso:https://hdl.handle.net/20.500.12390/1310
https://doi.org/10.1007/978-3-319-75193-1_54
Nivel de acceso:acceso abierto
Materia:Multidimensional index
Approximate similarity search
Fractal theory
Deep learning
https://purl.org/pe-repo/ocde/ford#5.08.02
Descripción
Sumario:Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for heavy training process to achieve accurate query results and the critical dependency on data-parameters.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).