Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
Descripción del Articulo
Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measuremen...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2016 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2863 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2863 https://doi.org/10.1016/j.talanta.2016.08.022 |
Nivel de acceso: | acceso abierto |
Materia: | Analytical Chemistry http://purl.org/pe-repo/ocde/ford#3.02.18 |
id |
CONC_8203f7c7cae87217e5425c3858031eda |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2863 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks |
title |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks |
spellingShingle |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks Leon-Roque, Noemi Analytical Chemistry http://purl.org/pe-repo/ocde/ford#3.02.18 |
title_short |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks |
title_full |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks |
title_fullStr |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks |
title_full_unstemmed |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks |
title_sort |
Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks |
author |
Leon-Roque, Noemi |
author_facet |
Leon-Roque, Noemi Abderrahim, Mohamed Nunez-Alejos, Luis Arribas, Silvia M. Condezo-Hoyos, Luis |
author_role |
author |
author2 |
Abderrahim, Mohamed Nunez-Alejos, Luis Arribas, Silvia M. Condezo-Hoyos, Luis |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Leon-Roque, Noemi Abderrahim, Mohamed Nunez-Alejos, Luis Arribas, Silvia M. Condezo-Hoyos, Luis |
dc.subject.none.fl_str_mv |
Analytical Chemistry |
topic |
Analytical Chemistry http://purl.org/pe-repo/ocde/ford#3.02.18 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#3.02.18 |
description |
Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. © 2016 Elsevier B.V. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2863 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.talanta.2016.08.022 |
url |
https://hdl.handle.net/20.500.12390/2863 https://doi.org/10.1016/j.talanta.2016.08.022 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
TALANTA |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier BV |
publisher.none.fl_str_mv |
Elsevier BV |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175540249985024 |
spelling |
Publicationrp07909600rp07912600rp07910600rp07911600rp07908600Leon-Roque, NoemiAbderrahim, MohamedNunez-Alejos, LuisArribas, Silvia M.Condezo-Hoyos, Luis2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/2863https://doi.org/10.1016/j.talanta.2016.08.022Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. © 2016 Elsevier B.V.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier BVTALANTAinfo:eu-repo/semantics/openAccessAnalytical Chemistryhttp://purl.org/pe-repo/ocde/ford#3.02.18-1Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networksinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2863oai:repositorio.concytec.gob.pe:20.500.12390/28632024-05-30 16:11:56.363http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="51a4de44-f71f-442f-975d-1aca4bb6e4b7"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks</Title> <PublishedIn> <Publication> <Title>TALANTA</Title> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1016/j.talanta.2016.08.022</DOI> <Authors> <Author> <DisplayName>Leon-Roque, Noemi</DisplayName> <Person id="rp07909" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Abderrahim, Mohamed</DisplayName> <Person id="rp07912" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nunez-Alejos, Luis</DisplayName> <Person id="rp07910" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arribas, Silvia M.</DisplayName> <Person id="rp07911" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condezo-Hoyos, Luis</DisplayName> <Person id="rp07908" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Analytical Chemistry</Keyword> <Abstract>Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. © 2016 Elsevier B.V.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).