Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks

Descripción del Articulo

Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measuremen...

Descripción completa

Detalles Bibliográficos
Autores: Leon-Roque, Noemi, Abderrahim, Mohamed, Nunez-Alejos, Luis, Arribas, Silvia M., Condezo-Hoyos, Luis
Formato: artículo
Fecha de Publicación:2016
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2863
Enlace del recurso:https://hdl.handle.net/20.500.12390/2863
https://doi.org/10.1016/j.talanta.2016.08.022
Nivel de acceso:acceso abierto
Materia:Analytical Chemistry
http://purl.org/pe-repo/ocde/ford#3.02.18
id CONC_8203f7c7cae87217e5425c3858031eda
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2863
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
title Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
spellingShingle Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
Leon-Roque, Noemi
Analytical Chemistry
http://purl.org/pe-repo/ocde/ford#3.02.18
title_short Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
title_full Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
title_fullStr Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
title_full_unstemmed Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
title_sort Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks
author Leon-Roque, Noemi
author_facet Leon-Roque, Noemi
Abderrahim, Mohamed
Nunez-Alejos, Luis
Arribas, Silvia M.
Condezo-Hoyos, Luis
author_role author
author2 Abderrahim, Mohamed
Nunez-Alejos, Luis
Arribas, Silvia M.
Condezo-Hoyos, Luis
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Leon-Roque, Noemi
Abderrahim, Mohamed
Nunez-Alejos, Luis
Arribas, Silvia M.
Condezo-Hoyos, Luis
dc.subject.none.fl_str_mv Analytical Chemistry
topic Analytical Chemistry
http://purl.org/pe-repo/ocde/ford#3.02.18
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#3.02.18
description Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. © 2016 Elsevier B.V.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2863
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.talanta.2016.08.022
url https://hdl.handle.net/20.500.12390/2863
https://doi.org/10.1016/j.talanta.2016.08.022
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv TALANTA
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier BV
publisher.none.fl_str_mv Elsevier BV
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175540249985024
spelling Publicationrp07909600rp07912600rp07910600rp07911600rp07908600Leon-Roque, NoemiAbderrahim, MohamedNunez-Alejos, LuisArribas, Silvia M.Condezo-Hoyos, Luis2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/2863https://doi.org/10.1016/j.talanta.2016.08.022Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. © 2016 Elsevier B.V.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier BVTALANTAinfo:eu-repo/semantics/openAccessAnalytical Chemistryhttp://purl.org/pe-repo/ocde/ford#3.02.18-1Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networksinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2863oai:repositorio.concytec.gob.pe:20.500.12390/28632024-05-30 16:11:56.363http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="51a4de44-f71f-442f-975d-1aca4bb6e4b7"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks</Title> <PublishedIn> <Publication> <Title>TALANTA</Title> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1016/j.talanta.2016.08.022</DOI> <Authors> <Author> <DisplayName>Leon-Roque, Noemi</DisplayName> <Person id="rp07909" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Abderrahim, Mohamed</DisplayName> <Person id="rp07912" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Nunez-Alejos, Luis</DisplayName> <Person id="rp07910" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Arribas, Silvia M.</DisplayName> <Person id="rp07911" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condezo-Hoyos, Luis</DisplayName> <Person id="rp07908" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Analytical Chemistry</Keyword> <Abstract>Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. © 2016 Elsevier B.V.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).