A distance between bounded linear operators
Descripción del Articulo
We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2822 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2822 https://doi.org/10.1016/j.topol.2020.107359 |
Nivel de acceso: | acceso abierto |
Materia: | Geometry and Topology http://purl.org/pe-repo/ocde/ford#1.01.02 |
id |
CONC_5988bcb596e9b0b90c74bbe1730a3a5f |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2822 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp07640600rp07639600rp07638600rp07641600Jung, W.Metzger, R.Morales, C. A.Villavicencio, H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2822https://doi.org/10.1016/j.topol.2020.107359We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier BVTOPOLOGY AND ITS APPLICATIONSinfo:eu-repo/semantics/openAccessGeometry and Topologyhttp://purl.org/pe-repo/ocde/ford#1.01.02-1A distance between bounded linear operatorsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2822oai:repositorio.concytec.gob.pe:20.500.12390/28222024-05-30 16:11:43.948http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="7a57a207-67aa-46e3-91dc-91b0db6a6fc5"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A distance between bounded linear operators</Title> <PublishedIn> <Publication> <Title>TOPOLOGY AND ITS APPLICATIONS</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1016/j.topol.2020.107359</DOI> <Authors> <Author> <DisplayName>Jung, W.</DisplayName> <Person id="rp07640" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Metzger, R.</DisplayName> <Person id="rp07639" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales, C. A.</DisplayName> <Person id="rp07638" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio, H.</DisplayName> <Person id="rp07641" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Geometry and Topology</Keyword> <Abstract>We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
A distance between bounded linear operators |
title |
A distance between bounded linear operators |
spellingShingle |
A distance between bounded linear operators Jung, W. Geometry and Topology http://purl.org/pe-repo/ocde/ford#1.01.02 |
title_short |
A distance between bounded linear operators |
title_full |
A distance between bounded linear operators |
title_fullStr |
A distance between bounded linear operators |
title_full_unstemmed |
A distance between bounded linear operators |
title_sort |
A distance between bounded linear operators |
author |
Jung, W. |
author_facet |
Jung, W. Metzger, R. Morales, C. A. Villavicencio, H. |
author_role |
author |
author2 |
Metzger, R. Morales, C. A. Villavicencio, H. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Jung, W. Metzger, R. Morales, C. A. Villavicencio, H. |
dc.subject.none.fl_str_mv |
Geometry and Topology |
topic |
Geometry and Topology http://purl.org/pe-repo/ocde/ford#1.01.02 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.02 |
description |
We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2822 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.topol.2020.107359 |
url |
https://hdl.handle.net/20.500.12390/2822 https://doi.org/10.1016/j.topol.2020.107359 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
TOPOLOGY AND ITS APPLICATIONS |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier BV |
publisher.none.fl_str_mv |
Elsevier BV |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175610124992512 |
score |
13.439045 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).