A distance between bounded linear operators

Descripción del Articulo

We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds...

Descripción completa

Detalles Bibliográficos
Autores: Jung, W., Metzger, R., Morales, C. A., Villavicencio, H.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2822
Enlace del recurso:https://hdl.handle.net/20.500.12390/2822
https://doi.org/10.1016/j.topol.2020.107359
Nivel de acceso:acceso abierto
Materia:Geometry and Topology
http://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_5988bcb596e9b0b90c74bbe1730a3a5f
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2822
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp07640600rp07639600rp07638600rp07641600Jung, W.Metzger, R.Morales, C. A.Villavicencio, H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2822https://doi.org/10.1016/j.topol.2020.107359We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier BVTOPOLOGY AND ITS APPLICATIONSinfo:eu-repo/semantics/openAccessGeometry and Topologyhttp://purl.org/pe-repo/ocde/ford#1.01.02-1A distance between bounded linear operatorsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2822oai:repositorio.concytec.gob.pe:20.500.12390/28222024-05-30 16:11:43.948http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="7a57a207-67aa-46e3-91dc-91b0db6a6fc5"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A distance between bounded linear operators</Title> <PublishedIn> <Publication> <Title>TOPOLOGY AND ITS APPLICATIONS</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1016/j.topol.2020.107359</DOI> <Authors> <Author> <DisplayName>Jung, W.</DisplayName> <Person id="rp07640" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Metzger, R.</DisplayName> <Person id="rp07639" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales, C. A.</DisplayName> <Person id="rp07638" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio, H.</DisplayName> <Person id="rp07641" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier BV</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Geometry and Topology</Keyword> <Abstract>We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv A distance between bounded linear operators
title A distance between bounded linear operators
spellingShingle A distance between bounded linear operators
Jung, W.
Geometry and Topology
http://purl.org/pe-repo/ocde/ford#1.01.02
title_short A distance between bounded linear operators
title_full A distance between bounded linear operators
title_fullStr A distance between bounded linear operators
title_full_unstemmed A distance between bounded linear operators
title_sort A distance between bounded linear operators
author Jung, W.
author_facet Jung, W.
Metzger, R.
Morales, C. A.
Villavicencio, H.
author_role author
author2 Metzger, R.
Morales, C. A.
Villavicencio, H.
author2_role author
author
author
dc.contributor.author.fl_str_mv Jung, W.
Metzger, R.
Morales, C. A.
Villavicencio, H.
dc.subject.none.fl_str_mv Geometry and Topology
topic Geometry and Topology
http://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.02
description We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2822
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.topol.2020.107359
url https://hdl.handle.net/20.500.12390/2822
https://doi.org/10.1016/j.topol.2020.107359
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv TOPOLOGY AND ITS APPLICATIONS
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier BV
publisher.none.fl_str_mv Elsevier BV
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175610124992512
score 13.439045
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).