Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders

Descripción del Articulo

This work has been partially funded by the Master Scholarship at the Universidad Nacional de San Agustín, which is an initiative of CITEC through a fund FONDECYT (Perú). We would like to thank research department of Instituto Nacional de Enfermedades Neoplásicas from Peru, for gently providing us hi...

Descripción completa

Detalles Bibliográficos
Autores: Coronado R., Ocsa A., Quispe O.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2309
Enlace del recurso:https://hdl.handle.net/20.500.12390/2309
https://doi.org/10.1007/978-3-319-75193-1_20
Nivel de acceso:acceso abierto
Materia:Skin cancer
Autoencoders
Convolutional neural networks
Image classification
http://purl.org/pe-repo/ocde/ford#3.03.08
id CONC_51d4fd9df2d97a1c80191cc86b525ec3
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2309
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
title Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
spellingShingle Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
Coronado R.
Skin cancer
Autoencoders
Convolutional neural networks
Image classification
http://purl.org/pe-repo/ocde/ford#3.03.08
title_short Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
title_full Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
title_fullStr Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
title_full_unstemmed Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
title_sort Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders
author Coronado R.
author_facet Coronado R.
Ocsa A.
Quispe O.
author_role author
author2 Ocsa A.
Quispe O.
author2_role author
author
dc.contributor.author.fl_str_mv Coronado R.
Ocsa A.
Quispe O.
dc.subject.none.fl_str_mv Skin cancer
topic Skin cancer
Autoencoders
Convolutional neural networks
Image classification
http://purl.org/pe-repo/ocde/ford#3.03.08
dc.subject.es_PE.fl_str_mv Autoencoders
Convolutional neural networks
Image classification
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#3.03.08
description This work has been partially funded by the Master Scholarship at the Universidad Nacional de San Agustín, which is an initiative of CITEC through a fund FONDECYT (Perú). We would like to thank research department of Instituto Nacional de Enfermedades Neoplásicas from Peru, for gently providing us his advice on the direction of this article.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2309
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-319-75193-1_20
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85042215814
url https://hdl.handle.net/20.500.12390/2309
https://doi.org/10.1007/978-3-319-75193-1_20
identifier_str_mv 2-s2.0-85042215814
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175490695331840
spelling Publicationrp01522600rp01524600rp01523600Coronado R.Ocsa A.Quispe O.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/2309https://doi.org/10.1007/978-3-319-75193-1_202-s2.0-85042215814This work has been partially funded by the Master Scholarship at the Universidad Nacional de San Agustín, which is an initiative of CITEC through a fund FONDECYT (Perú). We would like to thank research department of Instituto Nacional de Enfermedades Neoplásicas from Peru, for gently providing us his advice on the direction of this article.Every year, people around the world are affected by different skin diseases or cancer. Nowadays, these can only be detected accurately by clinical analysis and skin biopsy. However, the diagnosis of this malignant disease does not ensure the survival of the patient, since many clinical cases are detected in the terminal phases. Only early diagnosis would increase the life expectancy of patients. In this paper, we propose a method to recognition malignant skin diseases to identify malignant lesions in non-dermatoscopic images. For the method, we use Convolutional Neural Network and propose the use of autoencoders as another classification model that provides more information on the diagnosis. Experiments show that our proposal reaches up to 84.4% of accuracy in the well-known dataset of the ISIC-2016. In addition, we collect non-dermatoscopic images of skin lesions and developed a new dataset to demonstrate the advantage of our method. © Springer International Publishing AG, part of Springer Nature 2018.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengSpringer VerlagLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessSkin cancerAutoencoders-1Convolutional neural networks-1Image classification-1http://purl.org/pe-repo/ocde/ford#3.03.08-1Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencodersinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2309oai:repositorio.concytec.gob.pe:20.500.12390/23092024-05-30 15:42:09.146http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="3376daff-6e21-4a7c-8785-c675d8b208e0"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Non-dermatoscopic image analysis for the recognition of malignant skin diseases with convolutional neural network and autoencoders</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1007/978-3-319-75193-1_20</DOI> <SCP-Number>2-s2.0-85042215814</SCP-Number> <Authors> <Author> <DisplayName>Coronado R.</DisplayName> <Person id="rp01522" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ocsa A.</DisplayName> <Person id="rp01524" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Quispe O.</DisplayName> <Person id="rp01523" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Verlag</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Skin cancer</Keyword> <Keyword>Autoencoders</Keyword> <Keyword>Convolutional neural networks</Keyword> <Keyword>Image classification</Keyword> <Abstract>Every year, people around the world are affected by different skin diseases or cancer. Nowadays, these can only be detected accurately by clinical analysis and skin biopsy. However, the diagnosis of this malignant disease does not ensure the survival of the patient, since many clinical cases are detected in the terminal phases. Only early diagnosis would increase the life expectancy of patients. In this paper, we propose a method to recognition malignant skin diseases to identify malignant lesions in non-dermatoscopic images. For the method, we use Convolutional Neural Network and propose the use of autoencoders as another classification model that provides more information on the diagnosis. Experiments show that our proposal reaches up to 84.4% of accuracy in the well-known dataset of the ISIC-2016. In addition, we collect non-dermatoscopic images of skin lesions and developed a new dataset to demonstrate the advantage of our method. © Springer International Publishing AG, part of Springer Nature 2018.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439043
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).