Infinitely many solutions for a nonlocal type problem with sign-changing weight function
Descripción del Articulo
In this article, we study the existence of weak solutions for a fractional type problem driven by a nonlocal operator of elliptic type (-Δ)sa1u - λa2(|u|)u = ƒ(x, u) + g(x)|u|q(x)-2u in Ω u = 0 in ℝN \ Ω. Our approach is based on critical point theorems and variational methods.
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2429 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2429 |
| Nivel de acceso: | acceso abierto |
| Materia: | Variational methods Critical point theorems Fractional Orlicz-Sobolev spaces http://purl.org/pe-repo/ocde/ford#1.06.37 |
| id |
CONC_36347a475979acf94aa582c05e6ed31f |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2429 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function |
| title |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function |
| spellingShingle |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function Azroul E. Variational methods Critical point theorems Fractional Orlicz-Sobolev spaces http://purl.org/pe-repo/ocde/ford#1.06.37 |
| title_short |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function |
| title_full |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function |
| title_fullStr |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function |
| title_full_unstemmed |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function |
| title_sort |
Infinitely many solutions for a nonlocal type problem with sign-changing weight function |
| author |
Azroul E. |
| author_facet |
Azroul E. Benkirane A. Srati M. Torres C. |
| author_role |
author |
| author2 |
Benkirane A. Srati M. Torres C. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Azroul E. Benkirane A. Srati M. Torres C. |
| dc.subject.none.fl_str_mv |
Variational methods |
| topic |
Variational methods Critical point theorems Fractional Orlicz-Sobolev spaces http://purl.org/pe-repo/ocde/ford#1.06.37 |
| dc.subject.es_PE.fl_str_mv |
Critical point theorems Fractional Orlicz-Sobolev spaces |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.06.37 |
| description |
In this article, we study the existence of weak solutions for a fractional type problem driven by a nonlocal operator of elliptic type (-Δ)sa1u - λa2(|u|)u = ƒ(x, u) + g(x)|u|q(x)-2u in Ω u = 0 in ℝN \ Ω. Our approach is based on critical point theorems and variational methods. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Azroul, E., Benkirane, A., Srati, M., & Torres, C. (2021). Infinitely many solutions for a nonlocal type problem with sign-changing weight function. Electronic Journal of Differential Equations, 2021(16), pp. 1-15. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2429 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85103598559 |
| identifier_str_mv |
Azroul, E., Benkirane, A., Srati, M., & Torres, C. (2021). Infinitely many solutions for a nonlocal type problem with sign-changing weight function. Electronic Journal of Differential Equations, 2021(16), pp. 1-15. 2-s2.0-85103598559 |
| url |
https://hdl.handle.net/20.500.12390/2429 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Electronic Journal of Differential Equations |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Texas State University - San Marcos |
| publisher.none.fl_str_mv |
Texas State University - San Marcos |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/51d62c27-00c7-4f21-92cc-1c33e17081d2/download https://repositorio.concytec.gob.pe/bitstreams/b3e05432-0a3f-4408-8971-2485c6355ded/download https://repositorio.concytec.gob.pe/bitstreams/1f55460c-81ea-47f8-90e4-75c6eb2ac53e/download |
| bitstream.checksum.fl_str_mv |
a3b0f761bf416fa11f480c2a30cb2f97 40607cbda93bbac93f175f13a6b2a504 2f3c63be0a1a708eb060af64bc945507 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883075792633856 |
| spelling |
Publicationrp06028600rp06027600rp06026600rp05895600Azroul E.Benkirane A.Srati M.Torres C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021Azroul, E., Benkirane, A., Srati, M., & Torres, C. (2021). Infinitely many solutions for a nonlocal type problem with sign-changing weight function. Electronic Journal of Differential Equations, 2021(16), pp. 1-15.https://hdl.handle.net/20.500.12390/24292-s2.0-85103598559In this article, we study the existence of weak solutions for a fractional type problem driven by a nonlocal operator of elliptic type (-Δ)sa1u - λa2(|u|)u = ƒ(x, u) + g(x)|u|q(x)-2u in Ω u = 0 in ℝN \ Ω. Our approach is based on critical point theorems and variational methods.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengTexas State University - San MarcosElectronic Journal of Differential Equationsinfo:eu-repo/semantics/openAccessVariational methodsCritical point theorems-1Fractional Orlicz-Sobolev spaces-1http://purl.org/pe-repo/ocde/ford#1.06.37-1Infinitely many solutions for a nonlocal type problem with sign-changing weight functioninfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALInfenitely many - Electronic Journal of Differential Equations.pdfInfenitely many - Electronic Journal of Differential Equations.pdfapplication/pdf385480https://repositorio.concytec.gob.pe/bitstreams/51d62c27-00c7-4f21-92cc-1c33e17081d2/downloada3b0f761bf416fa11f480c2a30cb2f97MD51TEXTInfenitely many - Electronic Journal of Differential Equations.pdf.txtInfenitely many - Electronic Journal of Differential Equations.pdf.txtExtracted texttext/plain33325https://repositorio.concytec.gob.pe/bitstreams/b3e05432-0a3f-4408-8971-2485c6355ded/download40607cbda93bbac93f175f13a6b2a504MD52THUMBNAILInfenitely many - Electronic Journal of Differential Equations.pdf.jpgInfenitely many - Electronic Journal of Differential Equations.pdf.jpgGenerated Thumbnailimage/jpeg3916https://repositorio.concytec.gob.pe/bitstreams/1f55460c-81ea-47f8-90e4-75c6eb2ac53e/download2f3c63be0a1a708eb060af64bc945507MD5320.500.12390/2429oai:repositorio.concytec.gob.pe:20.500.12390/24292025-01-16 22:00:24.2http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="375681ee-141e-4d53-8fc3-05cfa68b07a3"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Infinitely many solutions for a nonlocal type problem with sign-changing weight function</Title> <PublishedIn> <Publication> <Title>Electronic Journal of Differential Equations</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <SCP-Number>2-s2.0-85103598559</SCP-Number> <Authors> <Author> <DisplayName>Azroul E.</DisplayName> <Person id="rp06028" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Benkirane A.</DisplayName> <Person id="rp06027" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Srati M.</DisplayName> <Person id="rp06026" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Torres C.</DisplayName> <Person id="rp05895" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Texas State University - San Marcos</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Variational methods</Keyword> <Keyword>Critical point theorems</Keyword> <Keyword>Fractional Orlicz-Sobolev spaces</Keyword> <Abstract>In this article, we study the existence of weak solutions for a fractional type problem driven by a nonlocal operator of elliptic type (-Δ)sa1u - λa2(|u|)u = ƒ(x, u) + g(x)|u|q(x)-2u in Ω u = 0 in ℝN \ Ω. Our approach is based on critical point theorems and variational methods.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.9939785 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).