Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials

Descripción del Articulo

In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian de...

Descripción completa

Detalles Bibliográficos
Autores: Ledesma C.T., Gutiérrez H.C.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2362
Enlace del recurso:https://hdl.handle.net/20.500.12390/2362
https://doi.org/10.1002/mma.7005
Nivel de acceso:acceso abierto
Materia:variational methods
nonlinear elliptic equations
nonlocal problems
nonlocal regional Laplacian
http://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley & Sons, Ltd.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).