Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
Descripción del Articulo
In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian de...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2362 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2362 https://doi.org/10.1002/mma.7005 |
| Nivel de acceso: | acceso abierto |
| Materia: | variational methods nonlinear elliptic equations nonlocal problems nonlocal regional Laplacian http://purl.org/pe-repo/ocde/ford#1.01.02 |
| id |
CONC_1e556f63cba3897e854e24919c26b424 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2362 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp05701600rp05700600Ledesma C.T.Gutiérrez H.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2362https://doi.org/10.1002/mma.70052-s2.0-85096688854In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley & Sons, Ltd.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengJohn Wiley and Sons LtdMathematical Methods in the Applied Sciencesinfo:eu-repo/semantics/openAccessvariational methodsnonlinear elliptic equations-1nonlocal problems-1nonlocal regional Laplacian-1http://purl.org/pe-repo/ocde/ford#1.01.02-1Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentialsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2362oai:repositorio.concytec.gob.pe:20.500.12390/23622024-05-30 16:07:30.917http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="86e356ee-3855-404c-887c-34d3ebe0a42d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials</Title> <PublishedIn> <Publication> <Title>Mathematical Methods in the Applied Sciences</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1002/mma.7005</DOI> <SCP-Number>2-s2.0-85096688854</SCP-Number> <Authors> <Author> <DisplayName>Ledesma C.T.</DisplayName> <Person id="rp05701" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gutiérrez H.C.</DisplayName> <Person id="rp05700" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>John Wiley and Sons Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>variational methods</Keyword> <Keyword>nonlinear elliptic equations</Keyword> <Keyword>nonlocal problems</Keyword> <Keyword>nonlocal regional Laplacian</Keyword> <Abstract>In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley & Sons, Ltd.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials |
| title |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials |
| spellingShingle |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials Ledesma C.T. variational methods nonlinear elliptic equations nonlocal problems nonlocal regional Laplacian http://purl.org/pe-repo/ocde/ford#1.01.02 |
| title_short |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials |
| title_full |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials |
| title_fullStr |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials |
| title_full_unstemmed |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials |
| title_sort |
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials |
| author |
Ledesma C.T. |
| author_facet |
Ledesma C.T. Gutiérrez H.C. |
| author_role |
author |
| author2 |
Gutiérrez H.C. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Ledesma C.T. Gutiérrez H.C. |
| dc.subject.none.fl_str_mv |
variational methods |
| topic |
variational methods nonlinear elliptic equations nonlocal problems nonlocal regional Laplacian http://purl.org/pe-repo/ocde/ford#1.01.02 |
| dc.subject.es_PE.fl_str_mv |
nonlinear elliptic equations nonlocal problems nonlocal regional Laplacian |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.02 |
| description |
In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley & Sons, Ltd. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2362 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1002/mma.7005 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85096688854 |
| url |
https://hdl.handle.net/20.500.12390/2362 https://doi.org/10.1002/mma.7005 |
| identifier_str_mv |
2-s2.0-85096688854 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Mathematical Methods in the Applied Sciences |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
John Wiley and Sons Ltd |
| publisher.none.fl_str_mv |
John Wiley and Sons Ltd |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844882994022580224 |
| score |
13.397899 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).