Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials

Descripción del Articulo

In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian de...

Descripción completa

Detalles Bibliográficos
Autores: Ledesma C.T., Gutiérrez H.C.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2362
Enlace del recurso:https://hdl.handle.net/20.500.12390/2362
https://doi.org/10.1002/mma.7005
Nivel de acceso:acceso abierto
Materia:variational methods
nonlinear elliptic equations
nonlocal problems
nonlocal regional Laplacian
http://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_1e556f63cba3897e854e24919c26b424
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2362
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp05701600rp05700600Ledesma C.T.Gutiérrez H.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2362https://doi.org/10.1002/mma.70052-s2.0-85096688854In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley & Sons, Ltd.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengJohn Wiley and Sons LtdMathematical Methods in the Applied Sciencesinfo:eu-repo/semantics/openAccessvariational methodsnonlinear elliptic equations-1nonlocal problems-1nonlocal regional Laplacian-1http://purl.org/pe-repo/ocde/ford#1.01.02-1Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentialsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2362oai:repositorio.concytec.gob.pe:20.500.12390/23622024-05-30 16:07:30.917http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="86e356ee-3855-404c-887c-34d3ebe0a42d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials</Title> <PublishedIn> <Publication> <Title>Mathematical Methods in the Applied Sciences</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1002/mma.7005</DOI> <SCP-Number>2-s2.0-85096688854</SCP-Number> <Authors> <Author> <DisplayName>Ledesma C.T.</DisplayName> <Person id="rp05701" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gutiérrez H.C.</DisplayName> <Person id="rp05700" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>John Wiley and Sons Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>variational methods</Keyword> <Keyword>nonlinear elliptic equations</Keyword> <Keyword>nonlocal problems</Keyword> <Keyword>nonlocal regional Laplacian</Keyword> <Abstract>In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 &lt; ? &lt; 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley &amp; Sons, Ltd.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
title Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
spellingShingle Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
Ledesma C.T.
variational methods
nonlinear elliptic equations
nonlocal problems
nonlocal regional Laplacian
http://purl.org/pe-repo/ocde/ford#1.01.02
title_short Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
title_full Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
title_fullStr Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
title_full_unstemmed Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
title_sort Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
author Ledesma C.T.
author_facet Ledesma C.T.
Gutiérrez H.C.
author_role author
author2 Gutiérrez H.C.
author2_role author
dc.contributor.author.fl_str_mv Ledesma C.T.
Gutiérrez H.C.
dc.subject.none.fl_str_mv variational methods
topic variational methods
nonlinear elliptic equations
nonlocal problems
nonlocal regional Laplacian
http://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv nonlinear elliptic equations
nonlocal problems
nonlocal regional Laplacian
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.02
description In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley & Sons, Ltd.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2362
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/mma.7005
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85096688854
url https://hdl.handle.net/20.500.12390/2362
https://doi.org/10.1002/mma.7005
identifier_str_mv 2-s2.0-85096688854
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Mathematical Methods in the Applied Sciences
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv John Wiley and Sons Ltd
publisher.none.fl_str_mv John Wiley and Sons Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844882994022580224
score 13.397899
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).