Similarity-based visual exploration of very large georeferenced multidimensional datasets
Descripción del Articulo
        This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
            
    
                        | Autores: | , , , | 
|---|---|
| Formato: | objeto de conferencia | 
| Fecha de Publicación: | 2019 | 
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación | 
| Repositorio: | CONCYTEC-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/774 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/774 https://doi.org/10.1145/3297280.3297556  | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Visualization Effective approaches Geographic information Geographical locations Interactive exploration Interactive visualizations Multi-dimensional datasets Multidimensional data Similarity Data visualization https://purl.org/pe-repo/ocde/ford#2.02.03  | 
| id | 
                  CONC_2fbccac386de6514261bd52eba5e9f26 | 
    
|---|---|
| oai_identifier_str | 
                  oai:repositorio.concytec.gob.pe:20.500.12390/774 | 
    
| network_acronym_str | 
                  CONC | 
    
| network_name_str | 
                  CONCYTEC-Institucional | 
    
| repository_id_str | 
                  4689 | 
    
| dc.title.none.fl_str_mv | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets | 
    
| title | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets | 
    
| spellingShingle | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets Peralta-Aranibar R. Visualization Effective approaches Effective approaches Geographic information Geographic information Geographical locations Interactive exploration Interactive visualizations Interactive visualizations Multi-dimensional datasets Multidimensional data Multidimensional data Similarity Data visualization https://purl.org/pe-repo/ocde/ford#2.02.03  | 
    
| title_short | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets | 
    
| title_full | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets | 
    
| title_fullStr | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets | 
    
| title_full_unstemmed | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets | 
    
| title_sort | 
                  Similarity-based visual exploration of very large georeferenced multidimensional datasets | 
    
| author | 
                  Peralta-Aranibar R. | 
    
| author_facet | 
                  Peralta-Aranibar R. Comba J.L.D. Pahins C.A.L. Gomez-Nieto E.  | 
    
| author_role | 
                  author | 
    
| author2 | 
                  Comba J.L.D. Pahins C.A.L. Gomez-Nieto E.  | 
    
| author2_role | 
                  author author author  | 
    
| dc.contributor.author.fl_str_mv | 
                  Peralta-Aranibar R. Comba J.L.D. Pahins C.A.L. Gomez-Nieto E.  | 
    
| dc.subject.none.fl_str_mv | 
                  Visualization | 
    
| topic | 
                  Visualization Effective approaches Effective approaches Geographic information Geographic information Geographical locations Interactive exploration Interactive visualizations Interactive visualizations Multi-dimensional datasets Multidimensional data Multidimensional data Similarity Data visualization https://purl.org/pe-repo/ocde/ford#2.02.03  | 
    
| dc.subject.es_PE.fl_str_mv | 
                  Effective approaches Effective approaches Geographic information Geographic information Geographical locations Interactive exploration Interactive visualizations Interactive visualizations Multi-dimensional datasets Multidimensional data Multidimensional data Similarity Data visualization  | 
    
| dc.subject.ocde.none.fl_str_mv | 
                  https://purl.org/pe-repo/ocde/ford#2.02.03 | 
    
| description | 
                  This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. | 
    
| publishDate | 
                  2019 | 
    
| dc.date.accessioned.none.fl_str_mv | 
                  2024-05-30T23:13:38Z | 
    
| dc.date.available.none.fl_str_mv | 
                  2024-05-30T23:13:38Z | 
    
| dc.date.issued.fl_str_mv | 
                  2019 | 
    
| dc.type.none.fl_str_mv | 
                  info:eu-repo/semantics/conferenceObject | 
    
| format | 
                  conferenceObject | 
    
| dc.identifier.uri.none.fl_str_mv | 
                  https://hdl.handle.net/20.500.12390/774 | 
    
| dc.identifier.doi.none.fl_str_mv | 
                  https://doi.org/10.1145/3297280.3297556 | 
    
| dc.identifier.scopus.none.fl_str_mv | 
                  2-s2.0-85065639857 | 
    
| url | 
                  https://hdl.handle.net/20.500.12390/774 https://doi.org/10.1145/3297280.3297556  | 
    
| identifier_str_mv | 
                  2-s2.0-85065639857 | 
    
| dc.language.iso.none.fl_str_mv | 
                  eng | 
    
| language | 
                  eng | 
    
| dc.relation.ispartof.none.fl_str_mv | 
                  Proceedings of the ACM Symposium on Applied Computing | 
    
| dc.rights.none.fl_str_mv | 
                  info:eu-repo/semantics/openAccess | 
    
| eu_rights_str_mv | 
                  openAccess | 
    
| dc.publisher.none.fl_str_mv | 
                  Association for Computing Machinery | 
    
| publisher.none.fl_str_mv | 
                  Association for Computing Machinery | 
    
| dc.source.none.fl_str_mv | 
                  reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC  | 
    
| instname_str | 
                  Consejo Nacional de Ciencia Tecnología e Innovación | 
    
| instacron_str | 
                  CONCYTEC | 
    
| institution | 
                  CONCYTEC | 
    
| reponame_str | 
                  CONCYTEC-Institucional | 
    
| collection | 
                  CONCYTEC-Institucional | 
    
| repository.name.fl_str_mv | 
                  Repositorio Institucional CONCYTEC | 
    
| repository.mail.fl_str_mv | 
                  repositorio@concytec.gob.pe | 
    
| _version_ | 
                  1844883043514318848 | 
    
| spelling | 
                  Publicationrp01989600rp01988600rp01990600rp01234500Peralta-Aranibar R.Comba J.L.D.Pahins C.A.L.Gomez-Nieto E.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/774https://doi.org/10.1145/3297280.32975562-s2.0-85065639857This work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.Big data visualization is a main task for data analysis. Due to its complexity in terms of volume and variety, very large datasets are unable to be queried for similarities among entries in traditional Database Management Systems. In this paper, we propose an effective approach for indexing millions of elements with the purpose of performing single and multiple visual similarity queries on multidimensional data associated with geographical locations. Our approach makes use of Z-Curve algorithm to map into 1D space considering similarities between data. Additionally, we present a set of results using real data of different sources and we analyze the insights obtained from the interactive exploration.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAssociation for Computing MachineryProceedings of the ACM Symposium on Applied Computinginfo:eu-repo/semantics/openAccessVisualizationEffective approaches-1Effective approaches-1Geographic information-1Geographic information-1Geographical locations-1Interactive exploration-1Interactive visualizations-1Interactive visualizations-1Multi-dimensional datasets-1Multidimensional data-1Multidimensional data-1Similarity-1Data visualization-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Similarity-based visual exploration of very large georeferenced multidimensional datasetsinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/774oai:repositorio.concytec.gob.pe:20.500.12390/7742024-05-30 15:36:05.016http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="e7210f72-f615-420f-b092-4dc46cb9f485"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Similarity-based visual exploration of very large georeferenced multidimensional datasets</Title> <PublishedIn> <Publication> <Title>Proceedings of the ACM Symposium on Applied Computing</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1145/3297280.3297556</DOI> <SCP-Number>2-s2.0-85065639857</SCP-Number> <Authors> <Author> <DisplayName>Peralta-Aranibar R.</DisplayName> <Person id="rp01989" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Comba J.L.D.</DisplayName> <Person id="rp01988" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pahins C.A.L.</DisplayName> <Person id="rp01990" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gomez-Nieto E.</DisplayName> <Person id="rp01234" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Association for Computing Machinery</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Visualization</Keyword> <Keyword>Effective approaches</Keyword> <Keyword>Effective approaches</Keyword> <Keyword>Geographic information</Keyword> <Keyword>Geographic information</Keyword> <Keyword>Geographical locations</Keyword> <Keyword>Interactive exploration</Keyword> <Keyword>Interactive visualizations</Keyword> <Keyword>Interactive visualizations</Keyword> <Keyword>Multi-dimensional datasets</Keyword> <Keyword>Multidimensional data</Keyword> <Keyword>Multidimensional data</Keyword> <Keyword>Similarity</Keyword> <Keyword>Data visualization</Keyword> <Abstract>Big data visualization is a main task for data analysis. Due to its complexity in terms of volume and variety, very large datasets are unable to be queried for similarities among entries in traditional Database Management Systems. In this paper, we propose an effective approach for indexing millions of elements with the purpose of performing single and multiple visual similarity queries on multidimensional data associated with geographical locations. Our approach makes use of Z-Curve algorithm to map into 1D space considering similarities between data. Additionally, we present a set of results using real data of different sources and we analyze the insights obtained from the interactive exploration.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 | 
    
| score | 
                  13.466479 | 
    
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).