Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm

Descripción del Articulo

Ant Colony Optimization (ACO) algorithm has been applied to solve the path planning problem of mobile robot in complex environments. The algorithm parameters have been analysed and tuned for different working areas with obstacles in different number, sizes and shapes. Also, the performance of ACO al...

Descripción completa

Detalles Bibliográficos
Autores: Uriol, R, Moran, A
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1204
Enlace del recurso:https://hdl.handle.net/20.500.12390/1204
https://doi.org/10.1109/ICCAR.2017.7942653
Nivel de acceso:acceso abierto
Materia:path planning
ant colony optimization
mobile robots
https://purl.org/pe-repo/ocde/ford#4.03.00
Descripción
Sumario:Ant Colony Optimization (ACO) algorithm has been applied to solve the path planning problem of mobile robot in complex environments. The algorithm parameters have been analysed and tuned for different working areas with obstacles in different number, sizes and shapes. Also, the performance of ACO algorithm was tested for different resolutions of working area representations. In all cases, it was possible to find optimal or near-optimal minimum-length paths from the initial to final desired positions without collision with obstacles or wall-borders.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).