Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm
Descripción del Articulo
Ant Colony Optimization (ACO) algorithm has been applied to solve the path planning problem of mobile robot in complex environments. The algorithm parameters have been analysed and tuned for different working areas with obstacles in different number, sizes and shapes. Also, the performance of ACO al...
| Autores: | , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2017 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1204 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/1204 https://doi.org/10.1109/ICCAR.2017.7942653 |
| Nivel de acceso: | acceso abierto |
| Materia: | path planning ant colony optimization mobile robots https://purl.org/pe-repo/ocde/ford#4.03.00 |
| id |
CONC_2f2ad1424ec22293bef451d96e6e4b00 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1204 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp03449600rp03448600Uriol, RMoran, A2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1204https://doi.org/10.1109/ICCAR.2017.7942653404256400003Ant Colony Optimization (ACO) algorithm has been applied to solve the path planning problem of mobile robot in complex environments. The algorithm parameters have been analysed and tuned for different working areas with obstacles in different number, sizes and shapes. Also, the performance of ACO algorithm was tested for different resolutions of working area representations. In all cases, it was possible to find optimal or near-optimal minimum-length paths from the initial to final desired positions without collision with obstacles or wall-borders.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInternational Conference on Control, Automation and Robotics (ICCAR)info:eu-repo/semantics/openAccesspath planningant colony optimization-1mobile robots-1https://purl.org/pe-repo/ocde/ford#4.03.00-1Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithminfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1204oai:repositorio.concytec.gob.pe:20.500.12390/12042024-05-30 15:49:48.855http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="9aa88885-448c-4e1b-b6bc-8655eb3e4ce2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1109/ICCAR.2017.7942653</DOI> <ISI-Number>404256400003</ISI-Number> <Authors> <Author> <DisplayName>Uriol, R</DisplayName> <Person id="rp03449" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Moran, A</DisplayName> <Person id="rp03448" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>International Conference on Control, Automation and Robotics (ICCAR)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>path planning</Keyword> <Keyword>ant colony optimization</Keyword> <Keyword>mobile robots</Keyword> <Abstract>Ant Colony Optimization (ACO) algorithm has been applied to solve the path planning problem of mobile robot in complex environments. The algorithm parameters have been analysed and tuned for different working areas with obstacles in different number, sizes and shapes. Also, the performance of ACO algorithm was tested for different resolutions of working area representations. In all cases, it was possible to find optimal or near-optimal minimum-length paths from the initial to final desired positions without collision with obstacles or wall-borders.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm |
| title |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm |
| spellingShingle |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm Uriol, R path planning ant colony optimization mobile robots https://purl.org/pe-repo/ocde/ford#4.03.00 |
| title_short |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm |
| title_full |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm |
| title_fullStr |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm |
| title_full_unstemmed |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm |
| title_sort |
Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm |
| author |
Uriol, R |
| author_facet |
Uriol, R Moran, A |
| author_role |
author |
| author2 |
Moran, A |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Uriol, R Moran, A |
| dc.subject.none.fl_str_mv |
path planning |
| topic |
path planning ant colony optimization mobile robots https://purl.org/pe-repo/ocde/ford#4.03.00 |
| dc.subject.es_PE.fl_str_mv |
ant colony optimization mobile robots |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.03.00 |
| description |
Ant Colony Optimization (ACO) algorithm has been applied to solve the path planning problem of mobile robot in complex environments. The algorithm parameters have been analysed and tuned for different working areas with obstacles in different number, sizes and shapes. Also, the performance of ACO algorithm was tested for different resolutions of working area representations. In all cases, it was possible to find optimal or near-optimal minimum-length paths from the initial to final desired positions without collision with obstacles or wall-borders. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2017 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1204 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ICCAR.2017.7942653 |
| dc.identifier.isi.none.fl_str_mv |
404256400003 |
| url |
https://hdl.handle.net/20.500.12390/1204 https://doi.org/10.1109/ICCAR.2017.7942653 |
| identifier_str_mv |
404256400003 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
International Conference on Control, Automation and Robotics (ICCAR) |
| publisher.none.fl_str_mv |
International Conference on Control, Automation and Robotics (ICCAR) |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883006115807232 |
| score |
13.413352 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).