Improving semantic segmentation of 3D medical images on 3D convolutional neural networks
Descripción del Articulo
A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of neural network that has shown to efficiently learn tasks related to the area of...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2702 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2702 https://doi.org/10.1109/CLEI47609.2019.235102 |
Nivel de acceso: | acceso abierto |
Materia: | Semantic Segmentation Class Imbalance Convolutional Neural Network Loss Function Medical Images http://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
CONC_2e104bd978910147d811e1002b0c729b |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2702 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks |
title |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks |
spellingShingle |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks Herrera A.M. Semantic Segmentation Class Imbalance Convolutional Neural Network Loss Function Medical Images http://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks |
title_full |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks |
title_fullStr |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks |
title_full_unstemmed |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks |
title_sort |
Improving semantic segmentation of 3D medical images on 3D convolutional neural networks |
author |
Herrera A.M. |
author_facet |
Herrera A.M. Cuadros-Vargas A.J. Pedrini H. |
author_role |
author |
author2 |
Cuadros-Vargas A.J. Pedrini H. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Herrera A.M. Cuadros-Vargas A.J. Pedrini H. |
dc.subject.none.fl_str_mv |
Semantic Segmentation |
topic |
Semantic Segmentation Class Imbalance Convolutional Neural Network Loss Function Medical Images http://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.es_PE.fl_str_mv |
Class Imbalance Convolutional Neural Network Loss Function Medical Images |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of neural network that has shown to efficiently learn tasks related to the area of image analysis, such as image segmentation, whose main purpose is to find regions or separable objects within an image. A more specific type of segmentation, called semantic segmentation, guarantees that each region has a semantic meaning by giving it a label or class. Since CNNs can automate the task of image semantic segmentation, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). This work aims to improve the task of binary semantic segmentation of volumetric medical images acquired by Magnetic Resonance Imaging (MRI) using a preexisting Three-Dimensional Convolutional Neural Network (3D CNN) architecture. We propose a formulation of a loss function for training this 3D CNN, for improving pixel-wise segmentation results. This loss function is formulated based on the idea of adapting a similarity coefficient, used for measuring the spatial overlap between the prediction and ground truth, and then using it to train the network. As contribution, the developed approach achieved good performance in a context where the pixel classes are imbalanced. We show how the choice of the loss function for training can affect the final quality of the segmentation. We validate our proposal over two medical image semantic segmentation datasets and show comparisons in performance between the proposed loss function and other pre-existing loss functions used for binary semantic segmentation. © 2019 IEEE. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2702 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/CLEI47609.2019.235102 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85084746854 |
url |
https://hdl.handle.net/20.500.12390/2702 https://doi.org/10.1109/CLEI47609.2019.235102 |
identifier_str_mv |
2-s2.0-85084746854 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings - 2019 45th Latin American Computing Conference, CLEI 2019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175471155118080 |
spelling |
Publicationrp07196600rp07194600rp07195600Herrera A.M.Cuadros-Vargas A.J.Pedrini H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2702https://doi.org/10.1109/CLEI47609.2019.2351022-s2.0-85084746854A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of neural network that has shown to efficiently learn tasks related to the area of image analysis, such as image segmentation, whose main purpose is to find regions or separable objects within an image. A more specific type of segmentation, called semantic segmentation, guarantees that each region has a semantic meaning by giving it a label or class. Since CNNs can automate the task of image semantic segmentation, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). This work aims to improve the task of binary semantic segmentation of volumetric medical images acquired by Magnetic Resonance Imaging (MRI) using a preexisting Three-Dimensional Convolutional Neural Network (3D CNN) architecture. We propose a formulation of a loss function for training this 3D CNN, for improving pixel-wise segmentation results. This loss function is formulated based on the idea of adapting a similarity coefficient, used for measuring the spatial overlap between the prediction and ground truth, and then using it to train the network. As contribution, the developed approach achieved good performance in a context where the pixel classes are imbalanced. We show how the choice of the loss function for training can affect the final quality of the segmentation. We validate our proposal over two medical image semantic segmentation datasets and show comparisons in performance between the proposed loss function and other pre-existing loss functions used for binary semantic segmentation. © 2019 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings - 2019 45th Latin American Computing Conference, CLEI 2019info:eu-repo/semantics/openAccessSemantic SegmentationClass Imbalance-1Convolutional Neural Network-1Loss Function-1Medical Images-1http://purl.org/pe-repo/ocde/ford#2.02.03-1Improving semantic segmentation of 3D medical images on 3D convolutional neural networksinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2702oai:repositorio.concytec.gob.pe:20.500.12390/27022024-05-30 16:10:37.546http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="28ad2ea2-6678-4a37-a2c7-b966e20bebe5"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Improving semantic segmentation of 3D medical images on 3D convolutional neural networks</Title> <PublishedIn> <Publication> <Title>Proceedings - 2019 45th Latin American Computing Conference, CLEI 2019</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/CLEI47609.2019.235102</DOI> <SCP-Number>2-s2.0-85084746854</SCP-Number> <Authors> <Author> <DisplayName>Herrera A.M.</DisplayName> <Person id="rp07196" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cuadros-Vargas A.J.</DisplayName> <Person id="rp07194" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pedrini H.</DisplayName> <Person id="rp07195" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Semantic Segmentation</Keyword> <Keyword>Class Imbalance</Keyword> <Keyword>Convolutional Neural Network</Keyword> <Keyword>Loss Function</Keyword> <Keyword>Medical Images</Keyword> <Abstract>A neural network is a mathematical model that is able to perform a task automatically or semi-automatically after learning the human knowledge that we provided. Moreover, a Convolutional Neural Network (CNN) is a type of neural network that has shown to efficiently learn tasks related to the area of image analysis, such as image segmentation, whose main purpose is to find regions or separable objects within an image. A more specific type of segmentation, called semantic segmentation, guarantees that each region has a semantic meaning by giving it a label or class. Since CNNs can automate the task of image semantic segmentation, they have been very useful for the medical area, applying them to the segmentation of organs or abnormalities (tumors). This work aims to improve the task of binary semantic segmentation of volumetric medical images acquired by Magnetic Resonance Imaging (MRI) using a preexisting Three-Dimensional Convolutional Neural Network (3D CNN) architecture. We propose a formulation of a loss function for training this 3D CNN, for improving pixel-wise segmentation results. This loss function is formulated based on the idea of adapting a similarity coefficient, used for measuring the spatial overlap between the prediction and ground truth, and then using it to train the network. As contribution, the developed approach achieved good performance in a context where the pixel classes are imbalanced. We show how the choice of the loss function for training can affect the final quality of the segmentation. We validate our proposal over two medical image semantic segmentation datasets and show comparisons in performance between the proposed loss function and other pre-existing loss functions used for binary semantic segmentation. © 2019 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).