Emotion detection for social robots based on nlp transformers and an emotion ontology

Descripción del Articulo

For social robots, knowledge regarding human emotional states is an essential part of adapting their behavior or associating emotions to other entities. Robots gather the information from which emotion detection is processed via different media, such as text, speech, images, or videos. The multimedi...

Descripción completa

Detalles Bibliográficos
Autores: Graterol W., Diaz-Amado J., Cardinale Y., Dongo I., Lopes-Silva E., Santos-Libarino C.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2392
Enlace del recurso:https://hdl.handle.net/20.500.12390/2392
https://doi.org/10.3390/s21041322
Nivel de acceso:acceso abierto
Materia:Text classification
Emotion detection
Natural language processing
Ontology
Social robots
http://purl.org/pe-repo/ocde/ford#2.02.02
id CONC_1c4dd0e4dc651a0745a9d192eb194312
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2392
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Emotion detection for social robots based on nlp transformers and an emotion ontology
title Emotion detection for social robots based on nlp transformers and an emotion ontology
spellingShingle Emotion detection for social robots based on nlp transformers and an emotion ontology
Graterol W.
Text classification
Emotion detection
Natural language processing
Ontology
Social robots
http://purl.org/pe-repo/ocde/ford#2.02.02
title_short Emotion detection for social robots based on nlp transformers and an emotion ontology
title_full Emotion detection for social robots based on nlp transformers and an emotion ontology
title_fullStr Emotion detection for social robots based on nlp transformers and an emotion ontology
title_full_unstemmed Emotion detection for social robots based on nlp transformers and an emotion ontology
title_sort Emotion detection for social robots based on nlp transformers and an emotion ontology
author Graterol W.
author_facet Graterol W.
Diaz-Amado J.
Cardinale Y.
Dongo I.
Lopes-Silva E.
Santos-Libarino C.
author_role author
author2 Diaz-Amado J.
Cardinale Y.
Dongo I.
Lopes-Silva E.
Santos-Libarino C.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Graterol W.
Diaz-Amado J.
Cardinale Y.
Dongo I.
Lopes-Silva E.
Santos-Libarino C.
dc.subject.none.fl_str_mv Text classification
topic Text classification
Emotion detection
Natural language processing
Ontology
Social robots
http://purl.org/pe-repo/ocde/ford#2.02.02
dc.subject.es_PE.fl_str_mv Emotion detection
Natural language processing
Ontology
Social robots
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.02
description For social robots, knowledge regarding human emotional states is an essential part of adapting their behavior or associating emotions to other entities. Robots gather the information from which emotion detection is processed via different media, such as text, speech, images, or videos. The multimedia content is then properly processed to recognize emotions/sentiments, for example, by analyzing faces and postures in images/videos based on machine learning techniques or by converting speech into text to perform emotion detection with natural language processing (NLP) techniques. Keeping this information in semantic repositories offers a wide range of possibilities for implementing smart applications. We propose a framework to allow social robots to detect emotions and to store this information in a semantic repository, based on EMONTO (an EMotion ONTOlogy), and in the first figure or table caption. Please define if appropriate. an ontology to represent emotions. As a proof-of-concept, we develop a first version of this framework focused on emotion detection in text, which can be obtained directly as text or by converting speech to text. We tested the implementation with a case study of tour-guide robots for museums that rely on a speech-to-text converter based on the Google Application Programming Interface (API) and a Python library, a neural network to label the emotions in texts based on NLP transformers, and EMONTO integrated with an ontology for museums; thus, it is possible to register the emotions that artworks produce in visitors. We evaluate the classification model, obtaining equivalent results compared with a state-of-the-art transformer-based model and with a clear roadmap for improvement. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Graterol, W., Diaz-Amado, J., Cardinale, Y., Dongo, I., Lopes-Silva, E., & Santos-Libarino, C. (2021). Emotion Detection for Social Robots Based on NLP Transformers and an Emotion Ontology. Sensors, 21(4), 1322. https://doi.org/10.3390/s21041322
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2392
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/s21041322
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85100779547
identifier_str_mv Graterol, W., Diaz-Amado, J., Cardinale, Y., Dongo, I., Lopes-Silva, E., & Santos-Libarino, C. (2021). Emotion Detection for Social Robots Based on NLP Transformers and an Emotion Ontology. Sensors, 21(4), 1322. https://doi.org/10.3390/s21041322
2-s2.0-85100779547
url https://hdl.handle.net/20.500.12390/2392
https://doi.org/10.3390/s21041322
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Sensors (Switzerland)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/5cc0966e-5c8d-4d34-8c10-221ebcc63cd7/download
https://repositorio.concytec.gob.pe/bitstreams/6ce4dbba-3daa-4661-8f75-17ba1c6cbde8/download
https://repositorio.concytec.gob.pe/bitstreams/b3b3a5f2-be5f-4cab-a6fb-4f1b5a9abdfb/download
bitstream.checksum.fl_str_mv 00467e97da2af1fc8d9dd885253d967e
b2756e6efdc0a87b541e4e220c81bf19
c851a5c3d0404a3b2be970ca17190b7d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175772745498624
spelling Publicationrp05864600rp05861600rp05703600rp05705600rp05862600rp05863600Graterol W.Diaz-Amado J.Cardinale Y.Dongo I.Lopes-Silva E.Santos-Libarino C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021Graterol, W., Diaz-Amado, J., Cardinale, Y., Dongo, I., Lopes-Silva, E., & Santos-Libarino, C. (2021). Emotion Detection for Social Robots Based on NLP Transformers and an Emotion Ontology. Sensors, 21(4), 1322. https://doi.org/10.3390/s21041322https://hdl.handle.net/20.500.12390/2392https://doi.org/10.3390/s210413222-s2.0-85100779547For social robots, knowledge regarding human emotional states is an essential part of adapting their behavior or associating emotions to other entities. Robots gather the information from which emotion detection is processed via different media, such as text, speech, images, or videos. The multimedia content is then properly processed to recognize emotions/sentiments, for example, by analyzing faces and postures in images/videos based on machine learning techniques or by converting speech into text to perform emotion detection with natural language processing (NLP) techniques. Keeping this information in semantic repositories offers a wide range of possibilities for implementing smart applications. We propose a framework to allow social robots to detect emotions and to store this information in a semantic repository, based on EMONTO (an EMotion ONTOlogy), and in the first figure or table caption. Please define if appropriate. an ontology to represent emotions. As a proof-of-concept, we develop a first version of this framework focused on emotion detection in text, which can be obtained directly as text or by converting speech to text. We tested the implementation with a case study of tour-guide robots for museums that rely on a speech-to-text converter based on the Google Application Programming Interface (API) and a Python library, a neural network to label the emotions in texts based on NLP transformers, and EMONTO integrated with an ontology for museums; thus, it is possible to register the emotions that artworks produce in visitors. We evaluate the classification model, obtaining equivalent results compared with a state-of-the-art transformer-based model and with a clear roadmap for improvement. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengMDPI AGSensors (Switzerland)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Text classificationEmotion detection-1Natural language processing-1Ontology-1Social robots-1http://purl.org/pe-repo/ocde/ford#2.02.02-1Emotion detection for social robots based on nlp transformers and an emotion ontologyinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALEmotion Detection - sensors-21-01322-v2.pdfEmotion Detection - sensors-21-01322-v2.pdfapplication/pdf961081https://repositorio.concytec.gob.pe/bitstreams/5cc0966e-5c8d-4d34-8c10-221ebcc63cd7/download00467e97da2af1fc8d9dd885253d967eMD51TEXTEmotion Detection - sensors-21-01322-v2.pdf.txtEmotion Detection - sensors-21-01322-v2.pdf.txtExtracted texttext/plain65831https://repositorio.concytec.gob.pe/bitstreams/6ce4dbba-3daa-4661-8f75-17ba1c6cbde8/downloadb2756e6efdc0a87b541e4e220c81bf19MD52THUMBNAILEmotion Detection - sensors-21-01322-v2.pdf.jpgEmotion Detection - sensors-21-01322-v2.pdf.jpgGenerated Thumbnailimage/jpeg5530https://repositorio.concytec.gob.pe/bitstreams/b3b3a5f2-be5f-4cab-a6fb-4f1b5a9abdfb/downloadc851a5c3d0404a3b2be970ca17190b7dMD5320.500.12390/2392oai:repositorio.concytec.gob.pe:20.500.12390/23922025-01-19 22:01:02.671https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="da75bd6e-273f-4dfc-95e4-3ce4bfb4bbda"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Emotion detection for social robots based on nlp transformers and an emotion ontology</Title> <PublishedIn> <Publication> <Title>Sensors (Switzerland)</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.3390/s21041322</DOI> <SCP-Number>2-s2.0-85100779547</SCP-Number> <Authors> <Author> <DisplayName>Graterol W.</DisplayName> <Person id="rp05864" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Diaz-Amado J.</DisplayName> <Person id="rp05861" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cardinale Y.</DisplayName> <Person id="rp05703" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dongo I.</DisplayName> <Person id="rp05705" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lopes-Silva E.</DisplayName> <Person id="rp05862" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Santos-Libarino C.</DisplayName> <Person id="rp05863" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Text classification</Keyword> <Keyword>Emotion detection</Keyword> <Keyword>Natural language processing</Keyword> <Keyword>Ontology</Keyword> <Keyword>Social robots</Keyword> <Abstract>For social robots, knowledge regarding human emotional states is an essential part of adapting their behavior or associating emotions to other entities. Robots gather the information from which emotion detection is processed via different media, such as text, speech, images, or videos. The multimedia content is then properly processed to recognize emotions/sentiments, for example, by analyzing faces and postures in images/videos based on machine learning techniques or by converting speech into text to perform emotion detection with natural language processing (NLP) techniques. Keeping this information in semantic repositories offers a wide range of possibilities for implementing smart applications. We propose a framework to allow social robots to detect emotions and to store this information in a semantic repository, based on EMONTO (an EMotion ONTOlogy), and in the first figure or table caption. Please define if appropriate. an ontology to represent emotions. As a proof-of-concept, we develop a first version of this framework focused on emotion detection in text, which can be obtained directly as text or by converting speech to text. We tested the implementation with a case study of tour-guide robots for museums that rely on a speech-to-text converter based on the Google Application Programming Interface (API) and a Python library, a neural network to label the emotions in texts based on NLP transformers, and EMONTO integrated with an ontology for museums; thus, it is possible to register the emotions that artworks produce in visitors. We evaluate the classification model, obtaining equivalent results compared with a state-of-the-art transformer-based model and with a clear roadmap for improvement. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.449188
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).