Android comment classification using BERT

Descripción del Articulo

This project focuses on developing an NLP-based text analysis tool to evaluate Android app user feedback, specifically collected from F-Droid. The lack of an automated solution to analyze and understand these opinions, classifying them into specific topics, motivates research. The goal is to provide...

Descripción completa

Detalles Bibliográficos
Autores: Mansilla Ancco, Susana Rosa Elizabeth, Pérez Treviños, Marcelo Antony
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/120
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/120
https://doi.org/10.48168/innosoft.s15.a120
https://purl.org/42411/s15/a120
https://n2t.net/ark:/42411/s15/a120
Nivel de acceso:acceso abierto
Materia:Topic classification
text classification
natural language processing
BERT
clasificación de tópicos
clasificación de texto
procesamiento de lenguaje natural
Descripción
Sumario:This project focuses on developing an NLP-based text analysis tool to evaluate Android app user feedback, specifically collected from F-Droid. The lack of an automated solution to analyze and understand these opinions, classifying them into specific topics, motivates research. The goal is to provide developers, users, and data analysts with a detailed view of user preferences and perceptions. Using data sets in English between 2014 and 2017, the proposal is implemented in Python with the Pandas library. The BERT model is used for classification, with a specific focus on the comparison of different models. The graphical interface is built in Visual Studio, allowing users to enter comments and obtain topic rankings, along with word cloud visualizations.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).