Marangoni flow traveling with reaction fronts: Eikonal approximation
Descripción del Articulo
This work was supported by CONCYTEC (Convention No. 026-2015-FONDECYT). This work was also supported by a grant from the Dirección de Gestión de la Investigación (DGI 2016-3-0025) of the Pontificia Universidad Católica del Perú.
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1098 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1098 https://doi.org/10.1063/1.5008891 |
Nivel de acceso: | acceso abierto |
Materia: | Stokes equations Marangoni flow autocatalysis https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
CONC_1a47ad7c919e9de73baa35d91171a28c |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1098 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Marangoni flow traveling with reaction fronts: Eikonal approximation |
title |
Marangoni flow traveling with reaction fronts: Eikonal approximation |
spellingShingle |
Marangoni flow traveling with reaction fronts: Eikonal approximation Guzman, R Stokes equations Marangoni flow Marangoni flow autocatalysis autocatalysis https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
Marangoni flow traveling with reaction fronts: Eikonal approximation |
title_full |
Marangoni flow traveling with reaction fronts: Eikonal approximation |
title_fullStr |
Marangoni flow traveling with reaction fronts: Eikonal approximation |
title_full_unstemmed |
Marangoni flow traveling with reaction fronts: Eikonal approximation |
title_sort |
Marangoni flow traveling with reaction fronts: Eikonal approximation |
author |
Guzman, R |
author_facet |
Guzman, R Vasquez, DA |
author_role |
author |
author2 |
Vasquez, DA |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Guzman, R Vasquez, DA |
dc.subject.none.fl_str_mv |
Stokes equations |
topic |
Stokes equations Marangoni flow Marangoni flow autocatalysis autocatalysis https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.es_PE.fl_str_mv |
Marangoni flow Marangoni flow autocatalysis autocatalysis |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
This work was supported by CONCYTEC (Convention No. 026-2015-FONDECYT). This work was also supported by a grant from the Dirección de Gestión de la Investigación (DGI 2016-3-0025) of the Pontificia Universidad Católica del Perú. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1098 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1063/1.5008891 |
dc.identifier.isi.none.fl_str_mv |
414246800026 |
url |
https://hdl.handle.net/20.500.12390/1098 https://doi.org/10.1063/1.5008891 |
identifier_str_mv |
414246800026 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
CHAOS |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
AIP |
publisher.none.fl_str_mv |
AIP |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883006739709952 |
spelling |
Publicationrp03119600rp03120600Guzman, RVasquez, DA2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1098https://doi.org/10.1063/1.5008891414246800026This work was supported by CONCYTEC (Convention No. 026-2015-FONDECYT). This work was also supported by a grant from the Dirección de Gestión de la Investigación (DGI 2016-3-0025) of the Pontificia Universidad Católica del Perú.Chemical reaction fronts traveling in liquids generate gradients of surface tension leading to fluid motion. This surface tension driven flow, known as Marangoni flow, modifies the shape and the speed of the reaction front. We model the front propagation using the Eikonal relation between curvature and normal speed of the front, resulting in a front evolution equation that couples to the fluid velocity. The sharp discontinuity between the reactants and products leads to a surface tension gradient proportional to a delta function. The Stokes equations with the surface tension gradient as part of the boundary conditions provide the corresponding fluid velocity field. Considering stress free boundaries at the bottom of the liquid layer, we find an analytical solution for the fluid vorticity leading to the velocity field. Solving numerically the appropriate no-slip boundary condition, we gain insights into the role of the boundary condition at the bottom layer. We compare our results with results from two other models for front propagation: the deterministic Kardar-Parisi-Zhang equation and a reaction-diffusion equation with cubic autocatalysis, finding good agreement for small differences in surface tensionConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAIPCHAOSinfo:eu-repo/semantics/openAccessStokes equationsMarangoni flow-1Marangoni flow-1autocatalysis-1autocatalysis-1https://purl.org/pe-repo/ocde/ford#1.01.00-1Marangoni flow traveling with reaction fronts: Eikonal approximationinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1098oai:repositorio.concytec.gob.pe:20.500.12390/10982024-05-30 15:36:27.355http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="9e264469-5ca1-49f5-b71c-c477715151b5"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Marangoni flow traveling with reaction fronts: Eikonal approximation</Title> <PublishedIn> <Publication> <Title>CHAOS</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1063/1.5008891</DOI> <ISI-Number>414246800026</ISI-Number> <Authors> <Author> <DisplayName>Guzman, R</DisplayName> <Person id="rp03119" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Vasquez, DA</DisplayName> <Person id="rp03120" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>AIP</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Stokes equations</Keyword> <Keyword>Marangoni flow</Keyword> <Keyword>Marangoni flow</Keyword> <Keyword>autocatalysis</Keyword> <Keyword>autocatalysis</Keyword> <Abstract>Chemical reaction fronts traveling in liquids generate gradients of surface tension leading to fluid motion. This surface tension driven flow, known as Marangoni flow, modifies the shape and the speed of the reaction front. We model the front propagation using the Eikonal relation between curvature and normal speed of the front, resulting in a front evolution equation that couples to the fluid velocity. The sharp discontinuity between the reactants and products leads to a surface tension gradient proportional to a delta function. The Stokes equations with the surface tension gradient as part of the boundary conditions provide the corresponding fluid velocity field. Considering stress free boundaries at the bottom of the liquid layer, we find an analytical solution for the fluid vorticity leading to the velocity field. Solving numerically the appropriate no-slip boundary condition, we gain insights into the role of the boundary condition at the bottom layer. We compare our results with results from two other models for front propagation: the deterministic Kardar-Parisi-Zhang equation and a reaction-diffusion equation with cubic autocatalysis, finding good agreement for small differences in surface tension</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.304034 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).