Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool

Descripción del Articulo

A finite element method (FEM) based tool is used in this work to numerically modeling mineral-slurry like flows in a 3D lid-driven cavity. Accordingly, the context in which the referred FEM based tool is being developed is firstly emphasized. Both mathematical and numerical models utilized here are...

Descripción completa

Detalles Bibliográficos
Autores: Peralta S., Córdova J., Celis C., Maza D.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2594
Enlace del recurso:https://hdl.handle.net/20.500.12390/2594
https://doi.org/10.1115/IMECE2020-24130
Nivel de acceso:acceso abierto
Materia:Non-Newtonian flow
Computational fluid dynamics
Finite element method
Lid-driven cavity
Mineral-slurry transport
http://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_1523b6ed3df5f1a1ba618da6e45b415e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2594
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
title Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
spellingShingle Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
Peralta S.
Non-Newtonian flow
Computational fluid dynamics
Finite element method
Lid-driven cavity
Mineral-slurry transport
http://purl.org/pe-repo/ocde/ford#1.01.01
title_short Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
title_full Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
title_fullStr Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
title_full_unstemmed Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
title_sort Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool
author Peralta S.
author_facet Peralta S.
Córdova J.
Celis C.
Maza D.
author_role author
author2 Córdova J.
Celis C.
Maza D.
author2_role author
author
author
dc.contributor.author.fl_str_mv Peralta S.
Córdova J.
Celis C.
Maza D.
dc.subject.none.fl_str_mv Non-Newtonian flow
topic Non-Newtonian flow
Computational fluid dynamics
Finite element method
Lid-driven cavity
Mineral-slurry transport
http://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv Computational fluid dynamics
Finite element method
Lid-driven cavity
Mineral-slurry transport
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.01
description A finite element method (FEM) based tool is used in this work to numerically modeling mineral-slurry like flows in a 3D lid-driven cavity. Accordingly, the context in which the referred FEM based tool is being developed is firstly emphasized. Both mathematical and numerical models utilized here are described next. A special emphasis is put on the flow governing equations and the particular FEM weighted residuals approach (Galerkin method) used to solve these equations. Since mineral-slurry flows both featuring relatively low flow velocities and containing large amounts of solid particles can be accounted for as laminar non-Newtonian flows, only laminar flows are discussed here. Indeed both Newtonian and non-Newtonian laminar flows are numerically studied using a 3D lid-driven cavity at two different Reynolds numbers. Two rheological models, power-law and Carreau-Yasuda, are utilized in the nonNewtonian flow simulations. When possible, the numerical results obtained here are compared with other numerical and experimental ones available in open literature. The associated averaged discrepancies from such comparisons are about 1%. The results obtained from the numerical simulations carried out here highlight the usefulness of the FEM based tool used in this work for realistically predicting the behavior of 3D Newtonian and non-Newtonian laminar flows. Multiphase turbulent flows including fluid-particle interaction models will be considered in future developments of this tool such to allow it properly representing the entire mineral-slurry transport phenomenon. © 2020 ASME.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2594
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1115/IMECE2020-24130
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85101240805
url https://hdl.handle.net/20.500.12390/2594
https://doi.org/10.1115/IMECE2020-24130
identifier_str_mv 2-s2.0-85101240805
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
publisher.none.fl_str_mv American Society of Mechanical Engineers (ASME)
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175514450821120
spelling Publicationrp06676600rp06677600rp05648600rp06678600Peralta S.Córdova J.Celis C.Maza D.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2594https://doi.org/10.1115/IMECE2020-241302-s2.0-85101240805A finite element method (FEM) based tool is used in this work to numerically modeling mineral-slurry like flows in a 3D lid-driven cavity. Accordingly, the context in which the referred FEM based tool is being developed is firstly emphasized. Both mathematical and numerical models utilized here are described next. A special emphasis is put on the flow governing equations and the particular FEM weighted residuals approach (Galerkin method) used to solve these equations. Since mineral-slurry flows both featuring relatively low flow velocities and containing large amounts of solid particles can be accounted for as laminar non-Newtonian flows, only laminar flows are discussed here. Indeed both Newtonian and non-Newtonian laminar flows are numerically studied using a 3D lid-driven cavity at two different Reynolds numbers. Two rheological models, power-law and Carreau-Yasuda, are utilized in the nonNewtonian flow simulations. When possible, the numerical results obtained here are compared with other numerical and experimental ones available in open literature. The associated averaged discrepancies from such comparisons are about 1%. The results obtained from the numerical simulations carried out here highlight the usefulness of the FEM based tool used in this work for realistically predicting the behavior of 3D Newtonian and non-Newtonian laminar flows. Multiphase turbulent flows including fluid-particle interaction models will be considered in future developments of this tool such to allow it properly representing the entire mineral-slurry transport phenomenon. © 2020 ASME.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAmerican Society of Mechanical Engineers (ASME)ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)info:eu-repo/semantics/openAccessNon-Newtonian flowComputational fluid dynamics-1Finite element method-1Lid-driven cavity-1Mineral-slurry transport-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based toolinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2594oai:repositorio.concytec.gob.pe:20.500.12390/25942024-05-30 16:09:38.732http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="41b612bd-238d-40a7-90f3-e779c752ef6e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Numerical modelling of mineral-slurry like flows in a 3D liddriven cavity using a finite element method based tool</Title> <PublishedIn> <Publication> <Title>ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1115/IMECE2020-24130</DOI> <SCP-Number>2-s2.0-85101240805</SCP-Number> <Authors> <Author> <DisplayName>Peralta S.</DisplayName> <Person id="rp06676" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Córdova J.</DisplayName> <Person id="rp06677" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Celis C.</DisplayName> <Person id="rp05648" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Maza D.</DisplayName> <Person id="rp06678" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>American Society of Mechanical Engineers (ASME)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Non-Newtonian flow</Keyword> <Keyword>Computational fluid dynamics</Keyword> <Keyword>Finite element method</Keyword> <Keyword>Lid-driven cavity</Keyword> <Keyword>Mineral-slurry transport</Keyword> <Abstract>A finite element method (FEM) based tool is used in this work to numerically modeling mineral-slurry like flows in a 3D lid-driven cavity. Accordingly, the context in which the referred FEM based tool is being developed is firstly emphasized. Both mathematical and numerical models utilized here are described next. A special emphasis is put on the flow governing equations and the particular FEM weighted residuals approach (Galerkin method) used to solve these equations. Since mineral-slurry flows both featuring relatively low flow velocities and containing large amounts of solid particles can be accounted for as laminar non-Newtonian flows, only laminar flows are discussed here. Indeed both Newtonian and non-Newtonian laminar flows are numerically studied using a 3D lid-driven cavity at two different Reynolds numbers. Two rheological models, power-law and Carreau-Yasuda, are utilized in the nonNewtonian flow simulations. When possible, the numerical results obtained here are compared with other numerical and experimental ones available in open literature. The associated averaged discrepancies from such comparisons are about 1%. The results obtained from the numerical simulations carried out here highlight the usefulness of the FEM based tool used in this work for realistically predicting the behavior of 3D Newtonian and non-Newtonian laminar flows. Multiphase turbulent flows including fluid-particle interaction models will be considered in future developments of this tool such to allow it properly representing the entire mineral-slurry transport phenomenon. © 2020 ASME.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.4481325
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).