1
artículo
Publicado 2020
Enlace
Enlace
The early stages of the development of a finite element method (FEM) based computational tool for numerically simulating mineral-slurry transport involving both Newtonian and non-Newtonian flows are described in this work. The rationale behind the conception, design and implementation of the referred object-oriented programming tool is thus initially highlighted. A particular emphasis is put on several architectural aspects accounted for and object class hierarchies defined during the development of the tool. Next one of the main modules composing the tool under development is further described. Finally, as a means of illustration, the use of the FEM based tool for simulating two-dimensional laminar flows is discussed. More specifically, canonical configurations widely studied in the past are firstly accounted for. A more practical application involving the simulation of a mineral-slurry...
2
artículo
Publicado 2020
Enlace
Enlace
A finite element method (FEM) based tool is used in this work to numerically modeling mineral-slurry like flows in a 3D lid-driven cavity. Accordingly, the context in which the referred FEM based tool is being developed is firstly emphasized. Both mathematical and numerical models utilized here are described next. A special emphasis is put on the flow governing equations and the particular FEM weighted residuals approach (Galerkin method) used to solve these equations. Since mineral-slurry flows both featuring relatively low flow velocities and containing large amounts of solid particles can be accounted for as laminar non-Newtonian flows, only laminar flows are discussed here. Indeed both Newtonian and non-Newtonian laminar flows are numerically studied using a 3D lid-driven cavity at two different Reynolds numbers. Two rheological models, power-law and Carreau-Yasuda, are utilized in t...