An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
Descripción del Articulo
Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementa...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2785 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2785 https://doi.org/10.1007/s10957-017-1171-7 |
Nivel de acceso: | acceso abierto |
Materia: | Mixed nonlinear complementarity problems Elastic–plastic torsion Feasible direction algorithm Interior point algorithm http://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics. © 2017, Springer Science+Business Media, LLC. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).