An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems

Descripción del Articulo

Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementa...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez A.E.R., Mazorche S.R., Herskovits J., Chapiro G.
Formato: artículo
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2785
Enlace del recurso:https://hdl.handle.net/20.500.12390/2785
https://doi.org/10.1007/s10957-017-1171-7
Nivel de acceso:acceso abierto
Materia:Mixed nonlinear complementarity problems
Elastic–plastic torsion
Feasible direction algorithm
Interior point algorithm
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics. © 2017, Springer Science+Business Media, LLC.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).