An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems

Descripción del Articulo

Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementa...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez A.E.R., Mazorche S.R., Herskovits J., Chapiro G.
Formato: artículo
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2785
Enlace del recurso:https://hdl.handle.net/20.500.12390/2785
https://doi.org/10.1007/s10957-017-1171-7
Nivel de acceso:acceso abierto
Materia:Mixed nonlinear complementarity problems
Elastic–plastic torsion
Feasible direction algorithm
Interior point algorithm
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_10ba03270cfbb4286a462845b1430a6a
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2785
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
title An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
spellingShingle An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
Gutierrez A.E.R.
Mixed nonlinear complementarity problems
Elastic–plastic torsion
Feasible direction algorithm
Interior point algorithm
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
title_full An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
title_fullStr An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
title_full_unstemmed An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
title_sort An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems
author Gutierrez A.E.R.
author_facet Gutierrez A.E.R.
Mazorche S.R.
Herskovits J.
Chapiro G.
author_role author
author2 Mazorche S.R.
Herskovits J.
Chapiro G.
author2_role author
author
author
dc.contributor.author.fl_str_mv Gutierrez A.E.R.
Mazorche S.R.
Herskovits J.
Chapiro G.
dc.subject.none.fl_str_mv Mixed nonlinear complementarity problems
topic Mixed nonlinear complementarity problems
Elastic–plastic torsion
Feasible direction algorithm
Interior point algorithm
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Elastic–plastic torsion
Feasible direction algorithm
Interior point algorithm
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics. © 2017, Springer Science+Business Media, LLC.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2785
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10957-017-1171-7
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85029545331
url https://hdl.handle.net/20.500.12390/2785
https://doi.org/10.1007/s10957-017-1171-7
identifier_str_mv 2-s2.0-85029545331
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Optimization Theory and Applications
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer New York LLC
publisher.none.fl_str_mv Springer New York LLC
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175827101581312
spelling Publicationrp07442600rp07440600rp07443600rp07441600Gutierrez A.E.R.Mazorche S.R.Herskovits J.Chapiro G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/2785https://doi.org/10.1007/s10957-017-1171-72-s2.0-85029545331Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics. © 2017, Springer Science+Business Media, LLC.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengSpringer New York LLCJournal of Optimization Theory and Applicationsinfo:eu-repo/semantics/openAccessMixed nonlinear complementarity problemsElastic–plastic torsion-1Feasible direction algorithm-1Interior point algorithm-1http://purl.org/pe-repo/ocde/ford#2.02.04-1An Interior Point Algorithm for Mixed Complementarity Nonlinear Problemsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2785oai:repositorio.concytec.gob.pe:20.500.12390/27852024-05-30 15:25:34.998http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f8487be4-a86d-462b-9704-5f1de1abad8e"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>An Interior Point Algorithm for Mixed Complementarity Nonlinear Problems</Title> <PublishedIn> <Publication> <Title>Journal of Optimization Theory and Applications</Title> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <DOI>https://doi.org/10.1007/s10957-017-1171-7</DOI> <SCP-Number>2-s2.0-85029545331</SCP-Number> <Authors> <Author> <DisplayName>Gutierrez A.E.R.</DisplayName> <Person id="rp07442" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mazorche S.R.</DisplayName> <Person id="rp07440" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Herskovits J.</DisplayName> <Person id="rp07443" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Chapiro G.</DisplayName> <Person id="rp07441" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer New York LLC</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Mixed nonlinear complementarity problems</Keyword> <Keyword>Elastic–plastic torsion</Keyword> <Keyword>Feasible direction algorithm</Keyword> <Keyword>Interior point algorithm</Keyword> <Abstract>Nonlinear complementarity and mixed complementarity problems arise in mathematical models describing several applications in Engineering, Economics and different branches of physics. Previously, robust and efficient feasible directions interior point algorithm was presented for nonlinear complementarity problems. In this paper, it is extended to mixed nonlinear complementarity problems. At each iteration, the algorithm finds a feasible direction with respect to the region defined by the inequality conditions, which is also monotonic descent direction for the potential function. Then, an approximate line search along this direction is performed in order to define the next iteration. Global and asymptotic convergence for the algorithm is investigated. The proposed algorithm is tested on several benchmark problems. The results are in good agreement with the asymptotic analysis. Finally, the algorithm is applied to the elastic–plastic torsion problem encountered in the field of Solid Mechanics. © 2017, Springer Science+Business Media, LLC.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.210282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).