Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas

Descripción del Articulo

En este trabajo se propone, implementa y evalu´a el modelo Quantum Inspired Evolutionary Algorithm with Real Representation using Filter Particle (FP-QIEA-R); este modelo usa la generacio´n cla´sica del modelo Quantum Inspired Evolutionary Algorithm with Real Representation (QIEA-R) (uso de funcio´n...

Descripción completa

Detalles Bibliográficos
Autor: Chire Saire, Josimar Edinson
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1947
Enlace del recurso:https://hdl.handle.net/20.500.12390/1947
Nivel de acceso:acceso abierto
Materia:Optimización
Algoritmo evolutivo de inspiración cuántica
Computación evolutiva
https://purl.org/pe-repo/ocde/ford#1.02.01
id CONC_0cbb3e6188e86b45517fd5163044ce12
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1947
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
title Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
spellingShingle Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
Chire Saire, Josimar Edinson
Optimización
Algoritmo evolutivo de inspiración cuántica
Computación evolutiva
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
title_full Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
title_fullStr Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
title_full_unstemmed Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
title_sort Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
author Chire Saire, Josimar Edinson
author_facet Chire Saire, Josimar Edinson
author_role author
dc.contributor.author.fl_str_mv Chire Saire, Josimar Edinson
dc.subject.none.fl_str_mv Optimización
topic Optimización
Algoritmo evolutivo de inspiración cuántica
Computación evolutiva
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.es_PE.fl_str_mv Algoritmo evolutivo de inspiración cuántica
Computación evolutiva
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description En este trabajo se propone, implementa y evalu´a el modelo Quantum Inspired Evolutionary Algorithm with Real Representation using Filter Particle (FP-QIEA-R); este modelo usa la generacio´n cla´sica del modelo Quantum Inspired Evolutionary Algorithm with Real Representation (QIEA-R) (uso de funcio´n de distribucio´n de probabilidad uniforme) y propone la generacio´n cl´asica usando un mecanismo inspirado en filtro de part´ıculas, aproximaci´on de funciones, recompensa de los mejores individuos y muestreo usando funciones de distribucio´n de probabilidad para la bu´squeda global y centroides para la bu´squeda local. Durante el progreso de este trabajo fueron evaluados varios m´etodos de estimacio´n de funciones: uni-dimensionales (splines, interpolaci´on de akima), multi-dimensionales (regresio´n multilineal, parzen window) para estimar la funcio´n de distribucio´n acumulada(modificada usando el criterio de recompensa). Para evaluar el modelo, se realizaron experimentos con funciones benchmark (Ackley, Rastrigin, Rosenbrock, Schwefel, Sphere) usando una dimensionalidad de 30 y 100. Algunas aplicaciones reales fueron evaluadas: la inicializaci´on de una red perceptr´on multicapa para ayudar la convergencia(reducir el nu´mero de ´epocas), encontrar los ´angulos en el problema de desdoblamiento de prote´ınas. En los primeros experimentos, todos los modelos fueron comparados usando medidas estad´ısticas(media,desviaci´on est´andar), tiempo de ejecucio´n y de acuerdo a los resultados obtenidos el modelo m´as robusto fue el modelo que usa interpolacio´n de akima y an˜ade durante las generaciones a los mejores individuos. Los resultados obtenidos mostraron que la propuesta tiene el mejor desempen˜o tratando diversos problemas de optimizaci´on num´erica comparado con el modelo existente QIEA-R.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1947
url https://hdl.handle.net/20.500.12390/1947
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.publisher.none.fl_str_mv Universidad Católica San Pablo
publisher.none.fl_str_mv Universidad Católica San Pablo
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883017070280704
spelling Publicationrp04966600Chire Saire, Josimar Edinson2024-05-30T23:13:38Z2024-05-30T23:13:38Z2017https://hdl.handle.net/20.500.12390/1947En este trabajo se propone, implementa y evalu´a el modelo Quantum Inspired Evolutionary Algorithm with Real Representation using Filter Particle (FP-QIEA-R); este modelo usa la generacio´n cla´sica del modelo Quantum Inspired Evolutionary Algorithm with Real Representation (QIEA-R) (uso de funcio´n de distribucio´n de probabilidad uniforme) y propone la generacio´n cl´asica usando un mecanismo inspirado en filtro de part´ıculas, aproximaci´on de funciones, recompensa de los mejores individuos y muestreo usando funciones de distribucio´n de probabilidad para la bu´squeda global y centroides para la bu´squeda local. Durante el progreso de este trabajo fueron evaluados varios m´etodos de estimacio´n de funciones: uni-dimensionales (splines, interpolaci´on de akima), multi-dimensionales (regresio´n multilineal, parzen window) para estimar la funcio´n de distribucio´n acumulada(modificada usando el criterio de recompensa). Para evaluar el modelo, se realizaron experimentos con funciones benchmark (Ackley, Rastrigin, Rosenbrock, Schwefel, Sphere) usando una dimensionalidad de 30 y 100. Algunas aplicaciones reales fueron evaluadas: la inicializaci´on de una red perceptr´on multicapa para ayudar la convergencia(reducir el nu´mero de ´epocas), encontrar los ´angulos en el problema de desdoblamiento de prote´ınas. En los primeros experimentos, todos los modelos fueron comparados usando medidas estad´ısticas(media,desviaci´on est´andar), tiempo de ejecucio´n y de acuerdo a los resultados obtenidos el modelo m´as robusto fue el modelo que usa interpolacio´n de akima y an˜ade durante las generaciones a los mejores individuos. Los resultados obtenidos mostraron que la propuesta tiene el mejor desempen˜o tratando diversos problemas de optimizaci´on num´erica comparado con el modelo existente QIEA-R.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaUniversidad Católica San Pabloinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/OptimizaciónAlgoritmo evolutivo de inspiración cuántica-1Computación evolutiva-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículasinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1947oai:repositorio.concytec.gob.pe:20.500.12390/19472024-05-30 15:41:16.527http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b0001c61-3374-4664-b5c1-7487bfd35abc"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2017</PublicationDate> <Authors> <Author> <DisplayName>Chire Saire, Josimar Edinson</DisplayName> <Person id="rp04966" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Católica San Pablo</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Optimización</Keyword> <Keyword>Algoritmo evolutivo de inspiración cuántica</Keyword> <Keyword>Computación evolutiva</Keyword> <Abstract>En este trabajo se propone, implementa y evalu´a el modelo Quantum Inspired Evolutionary Algorithm with Real Representation using Filter Particle (FP-QIEA-R); este modelo usa la generacio´n cla´sica del modelo Quantum Inspired Evolutionary Algorithm with Real Representation (QIEA-R) (uso de funcio´n de distribucio´n de probabilidad uniforme) y propone la generacio´n cl´asica usando un mecanismo inspirado en filtro de part´ıculas, aproximaci´on de funciones, recompensa de los mejores individuos y muestreo usando funciones de distribucio´n de probabilidad para la bu´squeda global y centroides para la bu´squeda local. Durante el progreso de este trabajo fueron evaluados varios m´etodos de estimacio´n de funciones: uni-dimensionales (splines, interpolaci´on de akima), multi-dimensionales (regresio´n multilineal, parzen window) para estimar la funcio´n de distribucio´n acumulada(modificada usando el criterio de recompensa). Para evaluar el modelo, se realizaron experimentos con funciones benchmark (Ackley, Rastrigin, Rosenbrock, Schwefel, Sphere) usando una dimensionalidad de 30 y 100. Algunas aplicaciones reales fueron evaluadas: la inicializaci´on de una red perceptr´on multicapa para ayudar la convergencia(reducir el nu´mero de ´epocas), encontrar los ´angulos en el problema de desdoblamiento de prote´ınas. En los primeros experimentos, todos los modelos fueron comparados usando medidas estad´ısticas(media,desviaci´on est´andar), tiempo de ejecucio´n y de acuerdo a los resultados obtenidos el modelo m´as robusto fue el modelo que usa interpolacio´n de akima y an˜ade durante las generaciones a los mejores individuos. Los resultados obtenidos mostraron que la propuesta tiene el mejor desempen˜o tratando diversos problemas de optimizaci´on num´erica comparado con el modelo existente QIEA-R.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.957005
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).