Una propuesta de algoritmo evolutivo de inspiración cuántica para representación real usando filtro de partículas
Descripción del Articulo
En este trabajo se propone, implementa y evalu´a el modelo Quantum Inspired Evolutionary Algorithm with Real Representation using Filter Particle (FP-QIEA-R); este modelo usa la generacio´n cla´sica del modelo Quantum Inspired Evolutionary Algorithm with Real Representation (QIEA-R) (uso de funcio´n...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2017 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1947 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1947 |
Nivel de acceso: | acceso abierto |
Materia: | Optimización Algoritmo evolutivo de inspiración cuántica Computación evolutiva https://purl.org/pe-repo/ocde/ford#1.02.01 |
Sumario: | En este trabajo se propone, implementa y evalu´a el modelo Quantum Inspired Evolutionary Algorithm with Real Representation using Filter Particle (FP-QIEA-R); este modelo usa la generacio´n cla´sica del modelo Quantum Inspired Evolutionary Algorithm with Real Representation (QIEA-R) (uso de funcio´n de distribucio´n de probabilidad uniforme) y propone la generacio´n cl´asica usando un mecanismo inspirado en filtro de part´ıculas, aproximaci´on de funciones, recompensa de los mejores individuos y muestreo usando funciones de distribucio´n de probabilidad para la bu´squeda global y centroides para la bu´squeda local. Durante el progreso de este trabajo fueron evaluados varios m´etodos de estimacio´n de funciones: uni-dimensionales (splines, interpolaci´on de akima), multi-dimensionales (regresio´n multilineal, parzen window) para estimar la funcio´n de distribucio´n acumulada(modificada usando el criterio de recompensa). Para evaluar el modelo, se realizaron experimentos con funciones benchmark (Ackley, Rastrigin, Rosenbrock, Schwefel, Sphere) usando una dimensionalidad de 30 y 100. Algunas aplicaciones reales fueron evaluadas: la inicializaci´on de una red perceptr´on multicapa para ayudar la convergencia(reducir el nu´mero de ´epocas), encontrar los ´angulos en el problema de desdoblamiento de prote´ınas. En los primeros experimentos, todos los modelos fueron comparados usando medidas estad´ısticas(media,desviaci´on est´andar), tiempo de ejecucio´n y de acuerdo a los resultados obtenidos el modelo m´as robusto fue el modelo que usa interpolacio´n de akima y an˜ade durante las generaciones a los mejores individuos. Los resultados obtenidos mostraron que la propuesta tiene el mejor desempen˜o tratando diversos problemas de optimizaci´on num´erica comparado con el modelo existente QIEA-R. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).