Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition

Descripción del Articulo

Pneumonia is one of the major causes of child mortality, yet with a timely diagnosis, it is usually curable with antibiotic therapy. In many developing regions, diagnosing pneumonia remains a challenge, due to shortages of medical resources. Lung ultrasound has proved to be a useful tool to detect l...

Descripción completa

Detalles Bibliográficos
Autores: Correa M., Zimic M., Barrientos F., Barrientos R., Román-Gonzalez A., Pajuelo M.J., Anticona C., Mayta H., Alva A., Solis-Vasquez L., Figueroa D.A., Chavez M.A., Lavarello R., Castañeda B., Paz-Soldán V.A., Checkley W., Gilman R.H., Oberhelman R.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/534
Enlace del recurso:https://hdl.handle.net/20.500.12390/534
https://doi.org/10.1371/journal.pone.0206410
Nivel de acceso:acceso abierto
Materia:male
Article
artificial neural network
automation
child
clinical article
controlled study
digital imaging
disease classification
echography
female
human
image analysis
image processing
infant
lung infiltrate
https://purl.org/pe-repo/ocde/ford#3.02.00
id CONC_0b9322ad281d0a27f739c98f21845088
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/534
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
title Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
spellingShingle Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
Correa M.
male
Article
artificial neural network
automation
child
clinical article
controlled study
digital imaging
disease classification
echography
female
human
image analysis
image processing
infant
lung infiltrate
https://purl.org/pe-repo/ocde/ford#3.02.00
title_short Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
title_full Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
title_fullStr Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
title_full_unstemmed Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
title_sort Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition
author Correa M.
author_facet Correa M.
Zimic M.
Barrientos F.
Barrientos R.
Román-Gonzalez A.
Pajuelo M.J.
Anticona C.
Mayta H.
Alva A.
Solis-Vasquez L.
Figueroa D.A.
Chavez M.A.
Lavarello R.
Castañeda B.
Paz-Soldán V.A.
Checkley W.
Gilman R.H.
Oberhelman R.
author_role author
author2 Zimic M.
Barrientos F.
Barrientos R.
Román-Gonzalez A.
Pajuelo M.J.
Anticona C.
Mayta H.
Alva A.
Solis-Vasquez L.
Figueroa D.A.
Chavez M.A.
Lavarello R.
Castañeda B.
Paz-Soldán V.A.
Checkley W.
Gilman R.H.
Oberhelman R.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Correa M.
Zimic M.
Barrientos F.
Barrientos R.
Román-Gonzalez A.
Pajuelo M.J.
Anticona C.
Mayta H.
Alva A.
Solis-Vasquez L.
Figueroa D.A.
Chavez M.A.
Lavarello R.
Castañeda B.
Paz-Soldán V.A.
Checkley W.
Gilman R.H.
Oberhelman R.
dc.subject.none.fl_str_mv male
topic male
Article
artificial neural network
automation
child
clinical article
controlled study
digital imaging
disease classification
echography
female
human
image analysis
image processing
infant
lung infiltrate
https://purl.org/pe-repo/ocde/ford#3.02.00
dc.subject.es_PE.fl_str_mv Article
artificial neural network
automation
child
clinical article
controlled study
digital imaging
disease classification
echography
female
human
image analysis
image processing
infant
lung infiltrate
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.02.00
description Pneumonia is one of the major causes of child mortality, yet with a timely diagnosis, it is usually curable with antibiotic therapy. In many developing regions, diagnosing pneumonia remains a challenge, due to shortages of medical resources. Lung ultrasound has proved to be a useful tool to detect lung consolidation as evidence of pneumonia. However, diagnosis of pneumonia by ultrasound has limitations: it is operator-dependent, and it needs to be carried out and interpreted by trained personnel. Pattern recognition and image analysis is a potential tool to enable automatic diagnosis of pneumonia consolidation without requiring an expert analyst. This paper presents a method for automatic classification of pneumonia using ultrasound imaging of the lungs and pattern recognition.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/534
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1371/journal.pone.0206410
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85058064971
url https://hdl.handle.net/20.500.12390/534
https://doi.org/10.1371/journal.pone.0206410
identifier_str_mv 2-s2.0-85058064971
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv PLOS ONE
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883059259736064
spelling Publicationrp00903600rp00606500rp00897600rp00910600rp00898600rp00904600rp00909600rp00747500rp00907600rp00905600rp00899600rp00902600rp00895600rp00901600rp00906600rp00900600rp00604500rp00908600Correa M.Zimic M.Barrientos F.Barrientos R.Román-Gonzalez A.Pajuelo M.J.Anticona C.Mayta H.Alva A.Solis-Vasquez L.Figueroa D.A.Chavez M.A.Lavarello R.Castañeda B.Paz-Soldán V.A.Checkley W.Gilman R.H.Oberhelman R.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018https://hdl.handle.net/20.500.12390/534https://doi.org/10.1371/journal.pone.02064102-s2.0-85058064971Pneumonia is one of the major causes of child mortality, yet with a timely diagnosis, it is usually curable with antibiotic therapy. In many developing regions, diagnosing pneumonia remains a challenge, due to shortages of medical resources. Lung ultrasound has proved to be a useful tool to detect lung consolidation as evidence of pneumonia. However, diagnosis of pneumonia by ultrasound has limitations: it is operator-dependent, and it needs to be carried out and interpreted by trained personnel. Pattern recognition and image analysis is a potential tool to enable automatic diagnosis of pneumonia consolidation without requiring an expert analyst. This paper presents a method for automatic classification of pneumonia using ultrasound imaging of the lungs and pattern recognition.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengPublic Library of SciencePLOS ONEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/maleArticle-1artificial neural network-1automation-1child-1clinical article-1controlled study-1digital imaging-1disease classification-1echography-1female-1human-1image analysis-1image processing-1infant-1lung infiltrate-1https://purl.org/pe-repo/ocde/ford#3.02.00-1Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognitioninfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/534oai:repositorio.concytec.gob.pe:20.500.12390/5342024-05-30 15:51:08.275https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="1a90895d-1ab3-4708-990f-32cf5b158fc5"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition</Title> <PublishedIn> <Publication> <Title>PLOS ONE</Title> </Publication> </PublishedIn> <PublicationDate>2018</PublicationDate> <DOI>https://doi.org/10.1371/journal.pone.0206410</DOI> <SCP-Number>2-s2.0-85058064971</SCP-Number> <Authors> <Author> <DisplayName>Correa M.</DisplayName> <Person id="rp00903" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zimic M.</DisplayName> <Person id="rp00606" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Barrientos F.</DisplayName> <Person id="rp00897" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Barrientos R.</DisplayName> <Person id="rp00910" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Román-Gonzalez A.</DisplayName> <Person id="rp00898" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pajuelo M.J.</DisplayName> <Person id="rp00904" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Anticona C.</DisplayName> <Person id="rp00909" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mayta H.</DisplayName> <Person id="rp00747" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Alva A.</DisplayName> <Person id="rp00907" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Solis-Vasquez L.</DisplayName> <Person id="rp00905" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Figueroa D.A.</DisplayName> <Person id="rp00899" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Chavez M.A.</DisplayName> <Person id="rp00902" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lavarello R.</DisplayName> <Person id="rp00895" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Castañeda B.</DisplayName> <Person id="rp00901" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Paz-Soldán V.A.</DisplayName> <Person id="rp00906" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Checkley W.</DisplayName> <Person id="rp00900" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gilman R.H.</DisplayName> <Person id="rp00604" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Oberhelman R.</DisplayName> <Person id="rp00908" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Public Library of Science</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>male</Keyword> <Keyword>Article</Keyword> <Keyword>artificial neural network</Keyword> <Keyword>automation</Keyword> <Keyword>child</Keyword> <Keyword>clinical article</Keyword> <Keyword>controlled study</Keyword> <Keyword>digital imaging</Keyword> <Keyword>disease classification</Keyword> <Keyword>echography</Keyword> <Keyword>female</Keyword> <Keyword>human</Keyword> <Keyword>image analysis</Keyword> <Keyword>image processing</Keyword> <Keyword>infant</Keyword> <Keyword>lung infiltrate</Keyword> <Abstract>Pneumonia is one of the major causes of child mortality, yet with a timely diagnosis, it is usually curable with antibiotic therapy. In many developing regions, diagnosing pneumonia remains a challenge, due to shortages of medical resources. Lung ultrasound has proved to be a useful tool to detect lung consolidation as evidence of pneumonia. However, diagnosis of pneumonia by ultrasound has limitations: it is operator-dependent, and it needs to be carried out and interpreted by trained personnel. Pattern recognition and image analysis is a potential tool to enable automatic diagnosis of pneumonia consolidation without requiring an expert analyst. This paper presents a method for automatic classification of pneumonia using ultrasound imaging of the lungs and pattern recognition.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.393037
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).