Fault diagnosis via neural ordinary differential equations

Descripción del Articulo

Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach...

Descripción completa

Detalles Bibliográficos
Autores: Enciso-Salas, Luis, Pérez-Zuñiga, Gustavo, Sotomayor-Moriano, Javier
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2336
Enlace del recurso:https://hdl.handle.net/20.500.12390/2336
https://doi.org/10.3390/app11093776
Nivel de acceso:acceso abierto
Materia:Neural ordinary differential equations
Deep learning
Fault diagnosis
http://purl.org/pe-repo/ocde/ford#4.04.01
id CONC_0aa2335b12c7007d0f5c14c806658e61
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2336
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Fault diagnosis via neural ordinary differential equations
title Fault diagnosis via neural ordinary differential equations
spellingShingle Fault diagnosis via neural ordinary differential equations
Enciso-Salas, Luis
Neural ordinary differential equations
Deep learning
Fault diagnosis
http://purl.org/pe-repo/ocde/ford#4.04.01
title_short Fault diagnosis via neural ordinary differential equations
title_full Fault diagnosis via neural ordinary differential equations
title_fullStr Fault diagnosis via neural ordinary differential equations
title_full_unstemmed Fault diagnosis via neural ordinary differential equations
title_sort Fault diagnosis via neural ordinary differential equations
author Enciso-Salas, Luis
author_facet Enciso-Salas, Luis
Pérez-Zuñiga, Gustavo
Sotomayor-Moriano, Javier
author_role author
author2 Pérez-Zuñiga, Gustavo
Sotomayor-Moriano, Javier
author2_role author
author
dc.contributor.author.fl_str_mv Enciso-Salas, Luis
Pérez-Zuñiga, Gustavo
Sotomayor-Moriano, Javier
dc.subject.none.fl_str_mv Neural ordinary differential equations
topic Neural ordinary differential equations
Deep learning
Fault diagnosis
http://purl.org/pe-repo/ocde/ford#4.04.01
dc.subject.es_PE.fl_str_mv Deep learning
Fault diagnosis
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#4.04.01
description Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2336
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/app11093776
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85105303041
url https://hdl.handle.net/20.500.12390/2336
https://doi.org/10.3390/app11093776
identifier_str_mv 2-s2.0-85105303041
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Applied Sciences (Switzerland)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/31756fe8-2df3-4cb0-aa13-f04440cc99ed/download
https://repositorio.concytec.gob.pe/bitstreams/eed72091-32f8-4ac8-a5d2-881c3b3954e2/download
https://repositorio.concytec.gob.pe/bitstreams/f3c31ece-cb96-4b15-8aba-e4576fdde3a3/download
bitstream.checksum.fl_str_mv 41c44a8b194f5caaae34317ecdbefca5
895e755d2678b392938696a2984621d0
0766fe4e65a0251fe3161e61ff9582ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883018937794560
spelling Publicationrp05586600rp05587600rp05588600Enciso-Salas, LuisPérez-Zuñiga, GustavoSotomayor-Moriano, Javier2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2336https://doi.org/10.3390/app110937762-s2.0-85105303041Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengMDPI AGApplied Sciences (Switzerland)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Neural ordinary differential equationsDeep learning-1Fault diagnosis-1http://purl.org/pe-repo/ocde/ford#4.04.01-1Fault diagnosis via neural ordinary differential equationsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#ORIGINALFault Diagnosis via Neural-applied sciences.pdfFault Diagnosis via Neural-applied sciences.pdfapplication/pdf1513212https://repositorio.concytec.gob.pe/bitstreams/31756fe8-2df3-4cb0-aa13-f04440cc99ed/download41c44a8b194f5caaae34317ecdbefca5MD51TEXTFault Diagnosis via Neural-applied sciences.pdf.txtFault Diagnosis via Neural-applied sciences.pdf.txtExtracted texttext/plain39416https://repositorio.concytec.gob.pe/bitstreams/eed72091-32f8-4ac8-a5d2-881c3b3954e2/download895e755d2678b392938696a2984621d0MD52THUMBNAILFault Diagnosis via Neural-applied sciences.pdf.jpgFault Diagnosis via Neural-applied sciences.pdf.jpgGenerated Thumbnailimage/jpeg5754https://repositorio.concytec.gob.pe/bitstreams/f3c31ece-cb96-4b15-8aba-e4576fdde3a3/download0766fe4e65a0251fe3161e61ff9582eeMD5320.500.12390/2336oai:repositorio.concytec.gob.pe:20.500.12390/23362025-01-16 22:00:47.298https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b5c56d90-ad51-4eed-9541-898d4289ef4d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Fault diagnosis via neural ordinary differential equations</Title> <PublishedIn> <Publication> <Title>Applied Sciences (Switzerland)</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.3390/app11093776</DOI> <SCP-Number>2-s2.0-85105303041</SCP-Number> <Authors> <Author> <DisplayName>Enciso-Salas, Luis</DisplayName> <Person id="rp05586" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pérez-Zuñiga, Gustavo</DisplayName> <Person id="rp05587" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sotomayor-Moriano, Javier</DisplayName> <Person id="rp05588" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Neural ordinary differential equations</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Fault diagnosis</Keyword> <Abstract>Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.926692
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).