Fault diagnosis via neural ordinary differential equations
Descripción del Articulo
Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2336 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2336 https://doi.org/10.3390/app11093776 |
| Nivel de acceso: | acceso abierto |
| Materia: | Neural ordinary differential equations Deep learning Fault diagnosis http://purl.org/pe-repo/ocde/ford#4.04.01 |
| id |
CONC_0aa2335b12c7007d0f5c14c806658e61 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2336 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Fault diagnosis via neural ordinary differential equations |
| title |
Fault diagnosis via neural ordinary differential equations |
| spellingShingle |
Fault diagnosis via neural ordinary differential equations Enciso-Salas, Luis Neural ordinary differential equations Deep learning Fault diagnosis http://purl.org/pe-repo/ocde/ford#4.04.01 |
| title_short |
Fault diagnosis via neural ordinary differential equations |
| title_full |
Fault diagnosis via neural ordinary differential equations |
| title_fullStr |
Fault diagnosis via neural ordinary differential equations |
| title_full_unstemmed |
Fault diagnosis via neural ordinary differential equations |
| title_sort |
Fault diagnosis via neural ordinary differential equations |
| author |
Enciso-Salas, Luis |
| author_facet |
Enciso-Salas, Luis Pérez-Zuñiga, Gustavo Sotomayor-Moriano, Javier |
| author_role |
author |
| author2 |
Pérez-Zuñiga, Gustavo Sotomayor-Moriano, Javier |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Enciso-Salas, Luis Pérez-Zuñiga, Gustavo Sotomayor-Moriano, Javier |
| dc.subject.none.fl_str_mv |
Neural ordinary differential equations |
| topic |
Neural ordinary differential equations Deep learning Fault diagnosis http://purl.org/pe-repo/ocde/ford#4.04.01 |
| dc.subject.es_PE.fl_str_mv |
Deep learning Fault diagnosis |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#4.04.01 |
| description |
Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2336 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/app11093776 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85105303041 |
| url |
https://hdl.handle.net/20.500.12390/2336 https://doi.org/10.3390/app11093776 |
| identifier_str_mv |
2-s2.0-85105303041 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Applied Sciences (Switzerland) |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.publisher.none.fl_str_mv |
MDPI AG |
| publisher.none.fl_str_mv |
MDPI AG |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/31756fe8-2df3-4cb0-aa13-f04440cc99ed/download https://repositorio.concytec.gob.pe/bitstreams/eed72091-32f8-4ac8-a5d2-881c3b3954e2/download https://repositorio.concytec.gob.pe/bitstreams/f3c31ece-cb96-4b15-8aba-e4576fdde3a3/download |
| bitstream.checksum.fl_str_mv |
41c44a8b194f5caaae34317ecdbefca5 895e755d2678b392938696a2984621d0 0766fe4e65a0251fe3161e61ff9582ee |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883018937794560 |
| spelling |
Publicationrp05586600rp05587600rp05588600Enciso-Salas, LuisPérez-Zuñiga, GustavoSotomayor-Moriano, Javier2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2336https://doi.org/10.3390/app110937762-s2.0-85105303041Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengMDPI AGApplied Sciences (Switzerland)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Neural ordinary differential equationsDeep learning-1Fault diagnosis-1http://purl.org/pe-repo/ocde/ford#4.04.01-1Fault diagnosis via neural ordinary differential equationsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#ORIGINALFault Diagnosis via Neural-applied sciences.pdfFault Diagnosis via Neural-applied sciences.pdfapplication/pdf1513212https://repositorio.concytec.gob.pe/bitstreams/31756fe8-2df3-4cb0-aa13-f04440cc99ed/download41c44a8b194f5caaae34317ecdbefca5MD51TEXTFault Diagnosis via Neural-applied sciences.pdf.txtFault Diagnosis via Neural-applied sciences.pdf.txtExtracted texttext/plain39416https://repositorio.concytec.gob.pe/bitstreams/eed72091-32f8-4ac8-a5d2-881c3b3954e2/download895e755d2678b392938696a2984621d0MD52THUMBNAILFault Diagnosis via Neural-applied sciences.pdf.jpgFault Diagnosis via Neural-applied sciences.pdf.jpgGenerated Thumbnailimage/jpeg5754https://repositorio.concytec.gob.pe/bitstreams/f3c31ece-cb96-4b15-8aba-e4576fdde3a3/download0766fe4e65a0251fe3161e61ff9582eeMD5320.500.12390/2336oai:repositorio.concytec.gob.pe:20.500.12390/23362025-01-16 22:00:47.298https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b5c56d90-ad51-4eed-9541-898d4289ef4d"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Fault diagnosis via neural ordinary differential equations</Title> <PublishedIn> <Publication> <Title>Applied Sciences (Switzerland)</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.3390/app11093776</DOI> <SCP-Number>2-s2.0-85105303041</SCP-Number> <Authors> <Author> <DisplayName>Enciso-Salas, Luis</DisplayName> <Person id="rp05586" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Pérez-Zuñiga, Gustavo</DisplayName> <Person id="rp05587" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sotomayor-Moriano, Javier</DisplayName> <Person id="rp05588" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>MDPI AG</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by/4.0/</License> <Keyword>Neural ordinary differential equations</Keyword> <Keyword>Deep learning</Keyword> <Keyword>Fault diagnosis</Keyword> <Abstract>Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.926692 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).