Stability Theorems for a Mathematical Model SI with Vital Dynamics Structured by Sex for the Infection Free Steady developed by the Ordinary Differential Equations and the Delay Differential Equations respectively

Descripción del Articulo

In the present work, a Basic Model SI with Vital Dynamics Structured by Gender developed by the Ordinary Differential Equations (Transmission of contagion is instantaneous), and also developed in the DelayDifferential Equations (Transmission of contagion occurs after a certain period of time), where...

Descripción completa

Detalles Bibliográficos
Autores: Pino Romero, Neisser, López Cruz, Roxana
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1625
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1625
Nivel de acceso:acceso abierto
Materia:Mathematical Epidemiology
Ordinary Differential Equations
Delay Differential Equations
Stationary Points
Local stability
Asintotic Estability
Epidemiología Matemática
Ecuaciones Diferenciales Ordinarias
Ecuaciones Diferenciales con Retardo
Puntos Estacionarios
Estabilidad Local
Estabilidad Asintótica
Descripción
Sumario:In the present work, a Basic Model SI with Vital Dynamics Structured by Gender developed by the Ordinary Differential Equations (Transmission of contagion is instantaneous), and also developed in the DelayDifferential Equations (Transmission of contagion occurs after a certain period of time), where the Local and Asymptotic Stability Theorem is proposed The Free of Infection point for both models, respectively.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).