1
artículo
Publicado 2021
Enlace
Enlace
Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approache...
2
tesis de maestría
Publicado 2015
Enlace
Enlace
El objetivo principal de esta tesis fue el desarrollar un sistema de navegación autónomo para la aplicación en robots móviles, para ello se uso el enfoque reactivo por presentar una aproximación más real al problema del planeamiento. El sistema de navegación se dividió en dos partes para fines del diseño; en la primera se desarrolló e implementó un controlador para el planeamiento de la trayectoria mediante el uso de controladores neuro-difusos y el uso de cuadrículas de certeza; mientras que en la segunda parte, se afrontó el problema de la localización del robot en un entorno desconocido, para lo cual se hizo uso de la fusión de sensores odométricos, inerciales y de redes inalámbricas. Para este propósito se diseño e implementó el controlador para diferentes plataformas de simulación, además se implementó el mismo en un robot Pioneer P3-AT, lográndose resultados...
3
tesis de maestría
Publicado 2015
Enlace
Enlace
El objetivo principal de esta tesis fue el desarrollar un sistema de navegación autónomo para la aplicación en robots móviles, para ello se uso el enfoque reactivo por presentar una aproximación más real al problema del planeamiento. El sistema de navegación se dividió en dos partes para fines del diseño; en la primera se desarrolló e implementó un controlador para el planeamiento de la trayectoria mediante el uso de controladores neuro-difusos y el uso de cuadrículas de certeza; mientras que en la segunda parte, se afrontó el problema de la localización del robot en un entorno desconocido, para lo cual se hizo uso de la fusión de sensores odométricos, inerciales y de redes inalámbricas. Para este propósito se diseño e implementó el controlador para diferentes plataformas de simulación, además se implementó el mismo en un robot Pioneer P3-AT, lográndose resultados...