A multi-modal visual emotion recognition method to instantiate an ontology
Descripción del Articulo
This research was supported by the FONDO NA-CIONAL DE DESARROLLO CIENT´FICO, TEC-NOLÓGICO Y DE INNOVACIÓN TECNOLÓGICA -FONDECYT as executing entity of CONCYTEC under grant agreement no. 01-2019-FONDECYT-BM-INC.INV in the project RUTAS: Robots for Urban Tourism, Autonomous and Semantic web based.
Autores: | , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2021 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2959 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2959 https://doi.org/10.5220/0010516104530464 |
Nivel de acceso: | acceso abierto |
Materia: | Visual Expressions Emotion Ontology Emotion Recognition Multi-modal Method https://purl.org/pe-repo/ocde/ford#1.05.01 |
id |
CONC_0515743669e2a7f218c9c4658f0f2ede |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2959 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
A multi-modal visual emotion recognition method to instantiate an ontology |
title |
A multi-modal visual emotion recognition method to instantiate an ontology |
spellingShingle |
A multi-modal visual emotion recognition method to instantiate an ontology Heredia J.P.A. Visual Expressions Emotion Ontology Emotion Ontology Emotion Recognition Emotion Recognition Multi-modal Method https://purl.org/pe-repo/ocde/ford#1.05.01 |
title_short |
A multi-modal visual emotion recognition method to instantiate an ontology |
title_full |
A multi-modal visual emotion recognition method to instantiate an ontology |
title_fullStr |
A multi-modal visual emotion recognition method to instantiate an ontology |
title_full_unstemmed |
A multi-modal visual emotion recognition method to instantiate an ontology |
title_sort |
A multi-modal visual emotion recognition method to instantiate an ontology |
author |
Heredia J.P.A. |
author_facet |
Heredia J.P.A. Cardinale Y. Dongo I. Díaz-Amado J. |
author_role |
author |
author2 |
Cardinale Y. Dongo I. Díaz-Amado J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Heredia J.P.A. Cardinale Y. Dongo I. Díaz-Amado J. |
dc.subject.none.fl_str_mv |
Visual Expressions |
topic |
Visual Expressions Emotion Ontology Emotion Ontology Emotion Recognition Emotion Recognition Multi-modal Method https://purl.org/pe-repo/ocde/ford#1.05.01 |
dc.subject.es_PE.fl_str_mv |
Emotion Ontology Emotion Ontology Emotion Recognition Emotion Recognition Multi-modal Method |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.01 |
description |
This research was supported by the FONDO NA-CIONAL DE DESARROLLO CIENT´FICO, TEC-NOLÓGICO Y DE INNOVACIÓN TECNOLÓGICA -FONDECYT as executing entity of CONCYTEC under grant agreement no. 01-2019-FONDECYT-BM-INC.INV in the project RUTAS: Robots for Urban Tourism, Autonomous and Semantic web based. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2959 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.5220/0010516104530464 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85111776744 |
url |
https://hdl.handle.net/20.500.12390/2959 https://doi.org/10.5220/0010516104530464 |
identifier_str_mv |
2-s2.0-85111776744 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings of the 16th International Conference on Software Technologies, ICSOFT 2021 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.publisher.none.fl_str_mv |
SciTePress |
publisher.none.fl_str_mv |
SciTePress |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175729503272960 |
spelling |
Publicationrp08378600rp05703600rp05705600rp08377600Heredia J.P.A.Cardinale Y.Dongo I.Díaz-Amado J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2959https://doi.org/10.5220/00105161045304642-s2.0-85111776744This research was supported by the FONDO NA-CIONAL DE DESARROLLO CIENT´FICO, TEC-NOLÓGICO Y DE INNOVACIÓN TECNOLÓGICA -FONDECYT as executing entity of CONCYTEC under grant agreement no. 01-2019-FONDECYT-BM-INC.INV in the project RUTAS: Robots for Urban Tourism, Autonomous and Semantic web based.Human emotion recognition from visual expressions is an important research area in computer vision and machine learning owing to its significant scientific and commercial potential. Since visual expressions can be captured from different modalities (e.g., face expressions, body posture, hands pose), multi-modal methods are becoming popular for analyzing human reactions. In contexts in which human emotion detection is performed to associate emotions to certain events or objects to support decision making or for further analysis, it is useful to keep this information in semantic repositories, which offers a wide range of possibilities for implementing smart applications. We propose a multi-modal method for human emotion recognition and an ontology-based approach to store the classification results in EMONTO, an extensible ontology to model emotions. The multi-modal method analyzes facial expressions, body gestures, and features from the body and the environment to determine an emotional state; this processes each modality with a specialized deep learning model and applying a fusion method. Our fusion method, called EmbraceNet+, consists of a branched architecture that integrates the EmbraceNet fusion method with other ones. We experimentally evaluate our multi-modal method on an adaptation of the EMOTIC dataset. Results show that our method outperforms the single-modal methods. Copyright © 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSciTePressProceedings of the 16th International Conference on Software Technologies, ICSOFT 2021info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Visual ExpressionsEmotion Ontology-1Emotion Ontology-1Emotion Recognition-1Emotion Recognition-1Multi-modal Method-1https://purl.org/pe-repo/ocde/ford#1.05.01-1A multi-modal visual emotion recognition method to instantiate an ontologyinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2959oai:repositorio.concytec.gob.pe:20.500.12390/29592024-05-30 16:12:30.034https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="be846f10-32a8-4d49-88a4-ff95925c1ccb"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A multi-modal visual emotion recognition method to instantiate an ontology</Title> <PublishedIn> <Publication> <Title>Proceedings of the 16th International Conference on Software Technologies, ICSOFT 2021</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.5220/0010516104530464</DOI> <SCP-Number>2-s2.0-85111776744</SCP-Number> <Authors> <Author> <DisplayName>Heredia J.P.A.</DisplayName> <Person id="rp08378" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cardinale Y.</DisplayName> <Person id="rp05703" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Dongo I.</DisplayName> <Person id="rp05705" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Díaz-Amado J.</DisplayName> <Person id="rp08377" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>SciTePress</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc-nd/4.0/</License> <Keyword>Visual Expressions</Keyword> <Keyword>Emotion Ontology</Keyword> <Keyword>Emotion Ontology</Keyword> <Keyword>Emotion Recognition</Keyword> <Keyword>Emotion Recognition</Keyword> <Keyword>Multi-modal Method</Keyword> <Abstract>Human emotion recognition from visual expressions is an important research area in computer vision and machine learning owing to its significant scientific and commercial potential. Since visual expressions can be captured from different modalities (e.g., face expressions, body posture, hands pose), multi-modal methods are becoming popular for analyzing human reactions. In contexts in which human emotion detection is performed to associate emotions to certain events or objects to support decision making or for further analysis, it is useful to keep this information in semantic repositories, which offers a wide range of possibilities for implementing smart applications. We propose a multi-modal method for human emotion recognition and an ontology-based approach to store the classification results in EMONTO, an extensible ontology to model emotions. The multi-modal method analyzes facial expressions, body gestures, and features from the body and the environment to determine an emotional state; this processes each modality with a specialized deep learning model and applying a fusion method. Our fusion method, called EmbraceNet+, consists of a branched architecture that integrates the EmbraceNet fusion method with other ones. We experimentally evaluate our multi-modal method on an adaptation of the EMOTIC dataset. Results show that our method outperforms the single-modal methods. Copyright © 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.438522 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).