Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú

Descripción del Articulo

At present, sentiment analysis has become a trend; above all, in digital product development companies, as it is essential for rapid and automatic analysis. Sentiment analysis deals with emotions with the help of software, and it is playing an unavoidable role in workplaces. The constant growth of s...

Descripción completa

Detalles Bibliográficos
Autores: Alegre-Veliz, Rosa, Gaspar-Ortiz, Pedro, Gamboa-Cruzado, Javier, Rodríguez Baca, Liset, Grandez Pizarro, Waldy, Menéndez Mueras, Rosa, Chávez Herrera, Carlos
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2525
Enlace del recurso:https://hdl.handle.net/20.500.13067/2525
https://doi.org/10.3991/ijim.v16i24.35493
Nivel de acceso:acceso abierto
Materia:machine learning
feeling analysis
Twitter
algorithms
classification
CRISP-ML(Q)
SVM
https://purl.org/pe-repo/ocde/ford#5.01.00
id AUTO_ef2c75fbfbcd8451d0cec4c2b92f2c2a
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2525
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Alegre-Veliz, RosaGaspar-Ortiz, PedroGamboa-Cruzado, JavierRodríguez Baca, LisetGrandez Pizarro, WaldyMenéndez Mueras, RosaChávez Herrera, Carlos2023-08-01T20:40:35Z2023-08-01T20:40:35Z2022-10-21https://hdl.handle.net/20.500.13067/2525International Journal of Interactive Mobile Technologies (iJIM)https://doi.org/10.3991/ijim.v16i24.35493At present, sentiment analysis has become a trend; above all, in digital product development companies, as it is essential for rapid and automatic analysis. Sentiment analysis deals with emotions with the help of software, and it is playing an unavoidable role in workplaces. The constant growth of social networks, especially the Twitter social network, has made the ability to understand and comprehend users or clients take a greater scope regarding their needs; and therefore, increase the complexity of analysis of this social network, causing excessive expenses in time, personnel and money. This work presents a solution through the application of Machine Learning (ML) for sentiment analysis and thus improve analysis, execution time and customer satisfaction. The scope of this research is limited to using the Support Vector Machine (SVM) supervised learning technique for the intended analysis. The model derives from the ML technique making use of cross validation. The applied methodology is the CRISP-ML(Q) Methodology. The results show that the use of ML allows efficient sentiment analysis in Twitter communications.application/pdfspaInternational Journal of Interactive Mobile Technologies (iJIM)PEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/machine learningfeeling analysisTwitteralgorithmsclassificationCRISP-ML(Q)SVMhttps://purl.org/pe-repo/ocde/ford#5.01.00Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perúinfo:eu-repo/semantics/articlehttps://online-journals.org/index.php/i-jim/article/view/354931624126142reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXTMachine Learning.pdf.txtMachine Learning.pdf.txtExtracted texttext/plain39978http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/3/Machine%20Learning.pdf.txt264e77ff3c039fafc746b8325390cf70MD53THUMBNAILMachine Learning.pdf.jpgMachine Learning.pdf.jpgGenerated Thumbnailimage/jpeg4770http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/4/Machine%20Learning.pdf.jpg2be9d5ef38e42199797ba4f512a8f971MD54ORIGINALMachine Learning.pdfMachine Learning.pdfArtículoapplication/pdf1425926http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/1/Machine%20Learning.pdf618a39d75f6ce66f4d747fbedc9ed54fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2525oai:repositorio.autonoma.edu.pe:20.500.13067/25252023-08-02 03:00:41.961Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
title Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
spellingShingle Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
Alegre-Veliz, Rosa
machine learning
feeling analysis
Twitter
algorithms
classification
CRISP-ML(Q)
SVM
https://purl.org/pe-repo/ocde/ford#5.01.00
title_short Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
title_full Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
title_fullStr Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
title_full_unstemmed Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
title_sort Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
author Alegre-Veliz, Rosa
author_facet Alegre-Veliz, Rosa
Gaspar-Ortiz, Pedro
Gamboa-Cruzado, Javier
Rodríguez Baca, Liset
Grandez Pizarro, Waldy
Menéndez Mueras, Rosa
Chávez Herrera, Carlos
author_role author
author2 Gaspar-Ortiz, Pedro
Gamboa-Cruzado, Javier
Rodríguez Baca, Liset
Grandez Pizarro, Waldy
Menéndez Mueras, Rosa
Chávez Herrera, Carlos
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Alegre-Veliz, Rosa
Gaspar-Ortiz, Pedro
Gamboa-Cruzado, Javier
Rodríguez Baca, Liset
Grandez Pizarro, Waldy
Menéndez Mueras, Rosa
Chávez Herrera, Carlos
dc.subject.es_PE.fl_str_mv machine learning
feeling analysis
Twitter
algorithms
classification
CRISP-ML(Q)
SVM
topic machine learning
feeling analysis
Twitter
algorithms
classification
CRISP-ML(Q)
SVM
https://purl.org/pe-repo/ocde/ford#5.01.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.01.00
description At present, sentiment analysis has become a trend; above all, in digital product development companies, as it is essential for rapid and automatic analysis. Sentiment analysis deals with emotions with the help of software, and it is playing an unavoidable role in workplaces. The constant growth of social networks, especially the Twitter social network, has made the ability to understand and comprehend users or clients take a greater scope regarding their needs; and therefore, increase the complexity of analysis of this social network, causing excessive expenses in time, personnel and money. This work presents a solution through the application of Machine Learning (ML) for sentiment analysis and thus improve analysis, execution time and customer satisfaction. The scope of this research is limited to using the Support Vector Machine (SVM) supervised learning technique for the intended analysis. The model derives from the ML technique making use of cross validation. The applied methodology is the CRISP-ML(Q) Methodology. The results show that the use of ML allows efficient sentiment analysis in Twitter communications.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-08-01T20:40:35Z
dc.date.available.none.fl_str_mv 2023-08-01T20:40:35Z
dc.date.issued.fl_str_mv 2022-10-21
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2525
dc.identifier.journal.es_PE.fl_str_mv International Journal of Interactive Mobile Technologies (iJIM)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3991/ijim.v16i24.35493
url https://hdl.handle.net/20.500.13067/2525
https://doi.org/10.3991/ijim.v16i24.35493
identifier_str_mv International Journal of Interactive Mobile Technologies (iJIM)
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.url.es_PE.fl_str_mv https://online-journals.org/index.php/i-jim/article/view/35493
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Journal of Interactive Mobile Technologies (iJIM)
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 16
dc.source.issue.es_PE.fl_str_mv 24
dc.source.beginpage.es_PE.fl_str_mv 126
dc.source.endpage.es_PE.fl_str_mv 142
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/3/Machine%20Learning.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/4/Machine%20Learning.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/1/Machine%20Learning.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/2/license.txt
bitstream.checksum.fl_str_mv 264e77ff3c039fafc746b8325390cf70
2be9d5ef38e42199797ba4f512a8f971
618a39d75f6ce66f4d747fbedc9ed54f
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915393722482688
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).