Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú
Descripción del Articulo
At present, sentiment analysis has become a trend; above all, in digital product development companies, as it is essential for rapid and automatic analysis. Sentiment analysis deals with emotions with the help of software, and it is playing an unavoidable role in workplaces. The constant growth of s...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/2525 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/2525 https://doi.org/10.3991/ijim.v16i24.35493 |
Nivel de acceso: | acceso abierto |
Materia: | machine learning feeling analysis algorithms classification CRISP-ML(Q) SVM https://purl.org/pe-repo/ocde/ford#5.01.00 |
id |
AUTO_ef2c75fbfbcd8451d0cec4c2b92f2c2a |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/2525 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Alegre-Veliz, RosaGaspar-Ortiz, PedroGamboa-Cruzado, JavierRodríguez Baca, LisetGrandez Pizarro, WaldyMenéndez Mueras, RosaChávez Herrera, Carlos2023-08-01T20:40:35Z2023-08-01T20:40:35Z2022-10-21https://hdl.handle.net/20.500.13067/2525International Journal of Interactive Mobile Technologies (iJIM)https://doi.org/10.3991/ijim.v16i24.35493At present, sentiment analysis has become a trend; above all, in digital product development companies, as it is essential for rapid and automatic analysis. Sentiment analysis deals with emotions with the help of software, and it is playing an unavoidable role in workplaces. The constant growth of social networks, especially the Twitter social network, has made the ability to understand and comprehend users or clients take a greater scope regarding their needs; and therefore, increase the complexity of analysis of this social network, causing excessive expenses in time, personnel and money. This work presents a solution through the application of Machine Learning (ML) for sentiment analysis and thus improve analysis, execution time and customer satisfaction. The scope of this research is limited to using the Support Vector Machine (SVM) supervised learning technique for the intended analysis. The model derives from the ML technique making use of cross validation. The applied methodology is the CRISP-ML(Q) Methodology. The results show that the use of ML allows efficient sentiment analysis in Twitter communications.application/pdfspaInternational Journal of Interactive Mobile Technologies (iJIM)PEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/machine learningfeeling analysisTwitteralgorithmsclassificationCRISP-ML(Q)SVMhttps://purl.org/pe-repo/ocde/ford#5.01.00Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perúinfo:eu-repo/semantics/articlehttps://online-journals.org/index.php/i-jim/article/view/354931624126142reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMATEXTMachine Learning.pdf.txtMachine Learning.pdf.txtExtracted texttext/plain39978http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/3/Machine%20Learning.pdf.txt264e77ff3c039fafc746b8325390cf70MD53THUMBNAILMachine Learning.pdf.jpgMachine Learning.pdf.jpgGenerated Thumbnailimage/jpeg4770http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/4/Machine%20Learning.pdf.jpg2be9d5ef38e42199797ba4f512a8f971MD54ORIGINALMachine Learning.pdfMachine Learning.pdfArtículoapplication/pdf1425926http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/1/Machine%20Learning.pdf618a39d75f6ce66f4d747fbedc9ed54fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/2525oai:repositorio.autonoma.edu.pe:20.500.13067/25252023-08-02 03:00:41.961Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú |
title |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú |
spellingShingle |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú Alegre-Veliz, Rosa machine learning feeling analysis algorithms classification CRISP-ML(Q) SVM https://purl.org/pe-repo/ocde/ford#5.01.00 |
title_short |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú |
title_full |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú |
title_fullStr |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú |
title_full_unstemmed |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú |
title_sort |
Machine Learning for Feeling Analysis in Twitter Communications: A Case Study in HEYDRU!, Perú |
author |
Alegre-Veliz, Rosa |
author_facet |
Alegre-Veliz, Rosa Gaspar-Ortiz, Pedro Gamboa-Cruzado, Javier Rodríguez Baca, Liset Grandez Pizarro, Waldy Menéndez Mueras, Rosa Chávez Herrera, Carlos |
author_role |
author |
author2 |
Gaspar-Ortiz, Pedro Gamboa-Cruzado, Javier Rodríguez Baca, Liset Grandez Pizarro, Waldy Menéndez Mueras, Rosa Chávez Herrera, Carlos |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Alegre-Veliz, Rosa Gaspar-Ortiz, Pedro Gamboa-Cruzado, Javier Rodríguez Baca, Liset Grandez Pizarro, Waldy Menéndez Mueras, Rosa Chávez Herrera, Carlos |
dc.subject.es_PE.fl_str_mv |
machine learning feeling analysis algorithms classification CRISP-ML(Q) SVM |
topic |
machine learning feeling analysis algorithms classification CRISP-ML(Q) SVM https://purl.org/pe-repo/ocde/ford#5.01.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.01.00 |
description |
At present, sentiment analysis has become a trend; above all, in digital product development companies, as it is essential for rapid and automatic analysis. Sentiment analysis deals with emotions with the help of software, and it is playing an unavoidable role in workplaces. The constant growth of social networks, especially the Twitter social network, has made the ability to understand and comprehend users or clients take a greater scope regarding their needs; and therefore, increase the complexity of analysis of this social network, causing excessive expenses in time, personnel and money. This work presents a solution through the application of Machine Learning (ML) for sentiment analysis and thus improve analysis, execution time and customer satisfaction. The scope of this research is limited to using the Support Vector Machine (SVM) supervised learning technique for the intended analysis. The model derives from the ML technique making use of cross validation. The applied methodology is the CRISP-ML(Q) Methodology. The results show that the use of ML allows efficient sentiment analysis in Twitter communications. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-08-01T20:40:35Z |
dc.date.available.none.fl_str_mv |
2023-08-01T20:40:35Z |
dc.date.issued.fl_str_mv |
2022-10-21 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/2525 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Interactive Mobile Technologies (iJIM) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3991/ijim.v16i24.35493 |
url |
https://hdl.handle.net/20.500.13067/2525 https://doi.org/10.3991/ijim.v16i24.35493 |
identifier_str_mv |
International Journal of Interactive Mobile Technologies (iJIM) |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.url.es_PE.fl_str_mv |
https://online-journals.org/index.php/i-jim/article/view/35493 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
International Journal of Interactive Mobile Technologies (iJIM) |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
16 |
dc.source.issue.es_PE.fl_str_mv |
24 |
dc.source.beginpage.es_PE.fl_str_mv |
126 |
dc.source.endpage.es_PE.fl_str_mv |
142 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/3/Machine%20Learning.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/4/Machine%20Learning.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/1/Machine%20Learning.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2525/2/license.txt |
bitstream.checksum.fl_str_mv |
264e77ff3c039fafc746b8325390cf70 2be9d5ef38e42199797ba4f512a8f971 618a39d75f6ce66f4d747fbedc9ed54f 9243398ff393db1861c890baeaeee5f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915393722482688 |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).