Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students

Descripción del Articulo

—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal a...

Descripción completa

Detalles Bibliográficos
Autores: Chamorro-Atalaya, Omar, Olivares-Zegarra, Soledad, Paredes-Soria, Alejandro, Samanamud-Loyola, Oscar, Anton-De los Santos, Marco, Anton-De los Santos, Juan, Fierro-Bravo, Maritte, Villanueva-Acosta, Victor
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1681
Enlace del recurso:https://hdl.handle.net/20.500.13067/1681
https://doi.org/10.14569/IJACSA.2021.0121289
Nivel de acceso:acceso abierto
Materia:Classification learner
Predictive system
Personal and social attitudes
Engineering students
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_d72417d66e14bbf8c07f99c32743912f
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/1681
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
dc.title.es_PE.fl_str_mv Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
title Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
spellingShingle Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
Chamorro-Atalaya, Omar
Classification learner
Predictive system
Personal and social attitudes
Engineering students
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
title_full Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
title_fullStr Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
title_full_unstemmed Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
title_sort Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
author Chamorro-Atalaya, Omar
author_facet Chamorro-Atalaya, Omar
Olivares-Zegarra, Soledad
Paredes-Soria, Alejandro
Samanamud-Loyola, Oscar
Anton-De los Santos, Marco
Anton-De los Santos, Juan
Fierro-Bravo, Maritte
Villanueva-Acosta, Victor
author_role author
author2 Olivares-Zegarra, Soledad
Paredes-Soria, Alejandro
Samanamud-Loyola, Oscar
Anton-De los Santos, Marco
Anton-De los Santos, Juan
Fierro-Bravo, Maritte
Villanueva-Acosta, Victor
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Chamorro-Atalaya, Omar
Olivares-Zegarra, Soledad
Paredes-Soria, Alejandro
Samanamud-Loyola, Oscar
Anton-De los Santos, Marco
Anton-De los Santos, Juan
Fierro-Bravo, Maritte
Villanueva-Acosta, Victor
dc.subject.es_PE.fl_str_mv Classification learner
Predictive system
Personal and social attitudes
Engineering students
topic Classification learner
Predictive system
Personal and social attitudes
Engineering students
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description —In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-03-02T13:51:34Z
dc.date.available.none.fl_str_mv 2022-03-02T13:51:34Z
dc.date.issued.fl_str_mv 2021-12
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Chamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.0121289
dc.identifier.issn.none.fl_str_mv 2156-5570
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/1681
dc.identifier.journal.es_PE.fl_str_mv International Journal of Advanced Computer Science and Applications (IJACSA)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14569/IJACSA.2021.0121289
identifier_str_mv Chamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.0121289
2156-5570
International Journal of Advanced Computer Science and Applications (IJACSA)
url https://hdl.handle.net/20.500.13067/1681
https://doi.org/10.14569/IJACSA.2021.0121289
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122573471&doi=10.14569%2fIJACSA.2021.0121289&partnerID=40&md5
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv The Science and Information Organization
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv AUTONOMA
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 12
dc.source.issue.es_PE.fl_str_mv 12
dc.source.beginpage.es_PE.fl_str_mv 718
dc.source.endpage.es_PE.fl_str_mv 725
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/1/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/3/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/4/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpg
bitstream.checksum.fl_str_mv 930e90da1eabbc1c4ac71dad0e7c5103
9243398ff393db1861c890baeaeee5f9
d4442698a8ab9ad827e92dca1397439d
8e217f47e38f558366860272bcd155f3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915505987223552
spelling Chamorro-Atalaya, OmarOlivares-Zegarra, SoledadParedes-Soria, AlejandroSamanamud-Loyola, OscarAnton-De los Santos, MarcoAnton-De los Santos, JuanFierro-Bravo, MaritteVillanueva-Acosta, Victor2022-03-02T13:51:34Z2022-03-02T13:51:34Z2021-12Chamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.01212892156-5570https://hdl.handle.net/20.500.13067/1681International Journal of Advanced Computer Science and Applications (IJACSA)https://doi.org/10.14569/IJACSA.2021.0121289—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.application/pdfengThe Science and Information OrganizationPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA1212718725reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAClassification learnerPredictive systemPersonal and social attitudesEngineering studentshttps://purl.org/pe-repo/ocde/ford#2.02.04Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Studentsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122573471&doi=10.14569%2fIJACSA.2021.0121289&partnerID=40&md5ORIGINALSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdfSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdfArtículoapplication/pdf274862http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/1/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf930e90da1eabbc1c4ac71dad0e7c5103MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXTSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txtSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txtExtracted texttext/plain35376http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/3/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txtd4442698a8ab9ad827e92dca1397439dMD53THUMBNAILSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpgSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpgGenerated Thumbnailimage/jpeg7797http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/4/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpg8e217f47e38f558366860272bcd155f3MD5420.500.13067/1681oai:repositorio.autonoma.edu.pe:20.500.13067/16812022-03-03 03:00:23.642Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe
score 13.959364
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).