Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students
Descripción del Articulo
—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal a...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1681 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1681 https://doi.org/10.14569/IJACSA.2021.0121289 |
Nivel de acceso: | acceso abierto |
Materia: | Classification learner Predictive system Personal and social attitudes Engineering students https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_d72417d66e14bbf8c07f99c32743912f |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1681 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
dc.title.es_PE.fl_str_mv |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
title |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
spellingShingle |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students Chamorro-Atalaya, Omar Classification learner Predictive system Personal and social attitudes Engineering students https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
title_full |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
title_fullStr |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
title_full_unstemmed |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
title_sort |
Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students |
author |
Chamorro-Atalaya, Omar |
author_facet |
Chamorro-Atalaya, Omar Olivares-Zegarra, Soledad Paredes-Soria, Alejandro Samanamud-Loyola, Oscar Anton-De los Santos, Marco Anton-De los Santos, Juan Fierro-Bravo, Maritte Villanueva-Acosta, Victor |
author_role |
author |
author2 |
Olivares-Zegarra, Soledad Paredes-Soria, Alejandro Samanamud-Loyola, Oscar Anton-De los Santos, Marco Anton-De los Santos, Juan Fierro-Bravo, Maritte Villanueva-Acosta, Victor |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Chamorro-Atalaya, Omar Olivares-Zegarra, Soledad Paredes-Soria, Alejandro Samanamud-Loyola, Oscar Anton-De los Santos, Marco Anton-De los Santos, Juan Fierro-Bravo, Maritte Villanueva-Acosta, Victor |
dc.subject.es_PE.fl_str_mv |
Classification learner Predictive system Personal and social attitudes Engineering students |
topic |
Classification learner Predictive system Personal and social attitudes Engineering students https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-02T13:51:34Z |
dc.date.available.none.fl_str_mv |
2022-03-02T13:51:34Z |
dc.date.issued.fl_str_mv |
2021-12 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Chamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.0121289 |
dc.identifier.issn.none.fl_str_mv |
2156-5570 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1681 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Advanced Computer Science and Applications (IJACSA) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14569/IJACSA.2021.0121289 |
identifier_str_mv |
Chamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.0121289 2156-5570 International Journal of Advanced Computer Science and Applications (IJACSA) |
url |
https://hdl.handle.net/20.500.13067/1681 https://doi.org/10.14569/IJACSA.2021.0121289 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122573471&doi=10.14569%2fIJACSA.2021.0121289&partnerID=40&md5 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
The Science and Information Organization |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
12 |
dc.source.issue.es_PE.fl_str_mv |
12 |
dc.source.beginpage.es_PE.fl_str_mv |
718 |
dc.source.endpage.es_PE.fl_str_mv |
725 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/1/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/3/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/4/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpg |
bitstream.checksum.fl_str_mv |
930e90da1eabbc1c4ac71dad0e7c5103 9243398ff393db1861c890baeaeee5f9 d4442698a8ab9ad827e92dca1397439d 8e217f47e38f558366860272bcd155f3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915505987223552 |
spelling |
Chamorro-Atalaya, OmarOlivares-Zegarra, SoledadParedes-Soria, AlejandroSamanamud-Loyola, OscarAnton-De los Santos, MarcoAnton-De los Santos, JuanFierro-Bravo, MaritteVillanueva-Acosta, Victor2022-03-02T13:51:34Z2022-03-02T13:51:34Z2021-12Chamorro-Atalaya, O., Olivares-Zegarra, S., Paredes-Soria, A., Samanamud-Loyola, O., Anton-De los Santos, M., Anton-De los Santos, J., Fierro-Bravo, M. & Villanueva-Acosta, V. (2021). “Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students” International Journal of Advanced Computer Science and Applications (IJACSA), 12(12), 718-725. http://dx.doi.org/10.14569/IJACSA.2021.01212892156-5570https://hdl.handle.net/20.500.13067/1681International Journal of Advanced Computer Science and Applications (IJACSA)https://doi.org/10.14569/IJACSA.2021.0121289—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.application/pdfengThe Science and Information OrganizationPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA1212718725reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAClassification learnerPredictive systemPersonal and social attitudesEngineering studentshttps://purl.org/pe-repo/ocde/ford#2.02.04Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Studentsinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122573471&doi=10.14569%2fIJACSA.2021.0121289&partnerID=40&md5ORIGINALSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdfSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdfArtículoapplication/pdf274862http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/1/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf930e90da1eabbc1c4ac71dad0e7c5103MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXTSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txtSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txtExtracted texttext/plain35376http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/3/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.txtd4442698a8ab9ad827e92dca1397439dMD53THUMBNAILSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpgSupervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpgGenerated Thumbnailimage/jpeg7797http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1681/4/Supervised-Learning-Through-Classification-Learner-Techniques-For-The-Predictive-System-Of-Personal-And-Social-Attitudes.pdf.jpg8e217f47e38f558366860272bcd155f3MD5420.500.13067/1681oai:repositorio.autonoma.edu.pe:20.500.13067/16812022-03-03 03:00:23.642Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
score |
13.959364 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).