Supervised Learning through Classification Learner Techniques for the Predictive System of Personal and Social Attitudes of Engineering Students

Descripción del Articulo

—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal a...

Descripción completa

Detalles Bibliográficos
Autores: Chamorro-Atalaya, Omar, Olivares-Zegarra, Soledad, Paredes-Soria, Alejandro, Samanamud-Loyola, Oscar, Anton-De los Santos, Marco, Anton-De los Santos, Juan, Fierro-Bravo, Maritte, Villanueva-Acosta, Victor
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1681
Enlace del recurso:https://hdl.handle.net/20.500.13067/1681
https://doi.org/10.14569/IJACSA.2021.0121289
Nivel de acceso:acceso abierto
Materia:Classification learner
Predictive system
Personal and social attitudes
Engineering students
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:—In this competitive scenario of the educational system, higher education institutions use intelligent learning tools and techniques to predict the factors of student academic performance. Given this, the article aims to determine the supervised learning model for the predictive system of personal and social attitudes of university students of professional engineering careers. For this, the Machine Learning Classification Learner technique is used by means of the Matlab R2021a software. The results reflect a predictive system capable of classifying the four satisfaction classes (1: dissatisfied, 2: not very satisfied, 3: satisfied and 4: very satisfied) with an accuracy of 91.96%, a precision of 79.09%, a Sensitivity of 75.66% and a Specificity of 92.09%, regarding the students' perception of their personal and social attitudes. As a result, the higher institution will be able to take measures to monitor and correct the strengths and weaknesses of each variable related to satisfaction with the quality of the educational service.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).