Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature
Descripción del Articulo
The world is currently experiencing a major pandemic with the SARS-CoV-2 virus in which many patients who suffer and have suffered from this disease are more likely to suffer from hypertension. For this purpose, we have carried out a review of the scientific literature, from which we have collected...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1755 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/1755 https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00110 |
Nivel de acceso: | acceso restringido |
Materia: | Hypertension COVID-19 Systematics Pandemics Databases Neural networks Asia https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
AUTO_b0d2c6ccb8b8f243455cc9b3c0ba9b81 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1755 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
dc.title.es_PE.fl_str_mv |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature |
title |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature |
spellingShingle |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature Herrera-Huisa, Luis Hypertension COVID-19 Systematics Pandemics Databases Neural networks Asia https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature |
title_full |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature |
title_fullStr |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature |
title_full_unstemmed |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature |
title_sort |
Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature |
author |
Herrera-Huisa, Luis |
author_facet |
Herrera-Huisa, Luis Arias-Meza, Nicole Cabanillas-Carbonell, Michael |
author_role |
author |
author2 |
Arias-Meza, Nicole Cabanillas-Carbonell, Michael |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Herrera-Huisa, Luis Arias-Meza, Nicole Cabanillas-Carbonell, Michael |
dc.subject.es_PE.fl_str_mv |
Hypertension COVID-19 Systematics Pandemics Databases Neural networks Asia |
topic |
Hypertension COVID-19 Systematics Pandemics Databases Neural networks Asia https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The world is currently experiencing a major pandemic with the SARS-CoV-2 virus in which many patients who suffer and have suffered from this disease are more likely to suffer from hypertension. For this purpose, we have carried out a review of the scientific literature, from which we have collected 105 articles obtained from the following databases: ProQuest, Dialnet, ScienceDirect, Scopus, IEEE Xplore. Subsequently, based on the inclusion and exclusion criteria, 68 articles were systematized, detailing that Machine Learning helps us in the detection and prediction of hypertension in patients with coronavirus, Likewise, the predictive models that allow better detection of hypertension in patients with Covid 19 are “Neural Networks”, “Cox Risk Model”, “Random Forest” and “XGBoost”, detailing the countries and technologies used. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-10T20:08:03Z |
dc.date.available.none.fl_str_mv |
2022-03-10T20:08:03Z |
dc.date.issued.fl_str_mv |
2021-12-22 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Herrera-Huisa, L., Arias-Meza, N. & Cabanillas-Carbonell, M. (2021, September). Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 769-775). IEEE. |
dc.identifier.isbn.none.fl_str_mv |
978-1-6654-3574-1 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1755 |
dc.identifier.journal.es_PE.fl_str_mv |
2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00110 |
identifier_str_mv |
Herrera-Huisa, L., Arias-Meza, N. & Cabanillas-Carbonell, M. (2021, September). Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 769-775). IEEE. 978-1-6654-3574-1 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) |
url |
https://hdl.handle.net/20.500.13067/1755 https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00110 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124154461&doi=10.1109%2fISPA-BDCloud-SocialCom-SustainCom52081.202 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
AUTONOMA |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.beginpage.es_PE.fl_str_mv |
769 |
dc.source.endpage.es_PE.fl_str_mv |
775 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/4/Analysis%20of%20the%20use%20of%20Machine%20Learning%20in%20the%20detection%20and%20prediction%20of%20hypertension%20in%20COVID%2019%20patients.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/5/Analysis%20of%20the%20use%20of%20Machine%20Learning%20in%20the%20detection%20and%20prediction%20of%20hypertension%20in%20COVID%2019%20patients.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/3/Analysis%20of%20the%20use%20of%20Machine%20Learning%20in%20the%20detection%20and%20prediction%20of%20hypertension%20in%20COVID%2019%20patients.pdf |
bitstream.checksum.fl_str_mv |
9243398ff393db1861c890baeaeee5f9 ae25115de59d24782402a262c29a2f04 6f1f4bfcf2792711560b67c9f98e322d 297e123816c6b6d8a498a3597d47dd16 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1774399985822990336 |
spelling |
Herrera-Huisa, LuisArias-Meza, NicoleCabanillas-Carbonell, Michael2022-03-10T20:08:03Z2022-03-10T20:08:03Z2021-12-22Herrera-Huisa, L., Arias-Meza, N. & Cabanillas-Carbonell, M. (2021, September). Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literature. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 769-775). IEEE.978-1-6654-3574-1https://hdl.handle.net/20.500.13067/17552021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00110The world is currently experiencing a major pandemic with the SARS-CoV-2 virus in which many patients who suffer and have suffered from this disease are more likely to suffer from hypertension. For this purpose, we have carried out a review of the scientific literature, from which we have collected 105 articles obtained from the following databases: ProQuest, Dialnet, ScienceDirect, Scopus, IEEE Xplore. Subsequently, based on the inclusion and exclusion criteria, 68 articles were systematized, detailing that Machine Learning helps us in the detection and prediction of hypertension in patients with coronavirus, Likewise, the predictive models that allow better detection of hypertension in patients with Covid 19 are “Neural Networks”, “Cox Risk Model”, “Random Forest” and “XGBoost”, detailing the countries and technologies used.application/pdfengInstitute of Electrical and Electronics EngineersPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA769775reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAHypertensionCOVID-19SystematicsPandemicsDatabasesNeural networksAsiahttps://purl.org/pe-repo/ocde/ford#2.02.04Analysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients. A review of the scientific literatureinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124154461&doi=10.1109%2fISPA-BDCloud-SocialCom-SustainCom52081.202LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXTAnalysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients.pdf.txtAnalysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients.pdf.txtExtracted texttext/plain847http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/4/Analysis%20of%20the%20use%20of%20Machine%20Learning%20in%20the%20detection%20and%20prediction%20of%20hypertension%20in%20COVID%2019%20patients.pdf.txtae25115de59d24782402a262c29a2f04MD54THUMBNAILAnalysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients.pdf.jpgAnalysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients.pdf.jpgGenerated Thumbnailimage/jpeg6288http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/5/Analysis%20of%20the%20use%20of%20Machine%20Learning%20in%20the%20detection%20and%20prediction%20of%20hypertension%20in%20COVID%2019%20patients.pdf.jpg6f1f4bfcf2792711560b67c9f98e322dMD55ORIGINALAnalysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients.pdfAnalysis of the use of Machine Learning in the detection and prediction of hypertension in COVID 19 patients.pdfVer fuenteapplication/pdf99732http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1755/3/Analysis%20of%20the%20use%20of%20Machine%20Learning%20in%20the%20detection%20and%20prediction%20of%20hypertension%20in%20COVID%2019%20patients.pdf297e123816c6b6d8a498a3597d47dd16MD5320.500.13067/1755oai:repositorio.autonoma.edu.pe:20.500.13067/17552022-03-11 03:00:22.62Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).