Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
Descripción del Articulo
Nowadays, nutritional foods have a great impact on healthy diets. In particular, maca, oatmeal, broad bean, soybean, and algarrobo are widely used in different ways in the daily diets of many people due to their nutritional components. However, many of these foods share certain physical similarities...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Autónoma del Perú |
Repositorio: | AUTONOMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/3061 |
Enlace del recurso: | https://hdl.handle.net/20.500.13067/3061 |
Nivel de acceso: | acceso abierto |
Materia: | PCA NIR spectroscopy Peruvian flours Chemometrics Maca https://purl.org/pe-repo/ocde/ford#2.07.00 |
id |
AUTO_81b189a0bd004d2bdc0ce86aa7919962 |
---|---|
oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/3061 |
network_acronym_str |
AUTO |
network_name_str |
AUTONOMA-Institucional |
repository_id_str |
4774 |
spelling |
Martínez-Julca, MiltonNazario-Naveda, RennyGallozzo-Cárdenas, MoisesRojas-Flores, SegundoChinchay-Espino, HectorAlvarez-Escobedo, AmiluMurga-Torres, Emzon2024-03-27T17:45:20Z2024-03-27T17:45:20Z2023https://hdl.handle.net/20.500.13067/3061Applied SciencesNowadays, nutritional foods have a great impact on healthy diets. In particular, maca, oatmeal, broad bean, soybean, and algarrobo are widely used in different ways in the daily diets of many people due to their nutritional components. However, many of these foods share certain physical similarities with others of lower quality, making it difficult to identify them with certainty. Few studies have been conducted to find any differences using practical techniques with minimal preparation and in short durations. In this work, Principal Component Analysis (PCA) and Near Infrared Spectroscopy (NIR) were used to classify and distinguish samples based on their chemical properties. The spectral data were pretreated to further highlight the differences among the samples determined via PCA. The results indicate that the raw spectral data of all the samples had similar patterns, and their respective PCA analysis results could not be used to differentiate them. However, pretreated data differentiated the foods in separate clusters according to score plots. The main difference was a C-O band that corresponded to a vibration mode at 4644 cm−1 associated with protein content. PCA combined with spectral analysis can be used to differentiate and classify foods using small samples through the chemical properties on their surfaces. This study contributes new knowledge toward the more precise identification of foods, even if they are combined.application/pdfengMDPIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/PCANIR spectroscopyPeruvian floursChemometricsMacahttps://purl.org/pe-repo/ocde/ford#2.07.00Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometricsinfo:eu-repo/semantics/article1320116reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL128.pdf128.pdfArtículoapplication/pdf3309103http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/1/128.pdfa20770edc166dab353b3e2543ac99feeMD51TEXT128.pdf.txt128.pdf.txtExtracted texttext/plain51629http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/3/128.pdf.txtff57bb6fac3968e466270a9b870f15a3MD53THUMBNAIL128.pdf.jpg128.pdf.jpgGenerated Thumbnailimage/jpeg7128http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/4/128.pdf.jpge9d8e7c7897781af11fef06088e0d3d0MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/3061oai:repositorio.autonoma.edu.pe:20.500.13067/30612024-03-28 03:00:39.972Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw== |
dc.title.es_PE.fl_str_mv |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics |
title |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics |
spellingShingle |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics Martínez-Julca, Milton PCA NIR spectroscopy Peruvian flours Chemometrics Maca https://purl.org/pe-repo/ocde/ford#2.07.00 |
title_short |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics |
title_full |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics |
title_fullStr |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics |
title_full_unstemmed |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics |
title_sort |
Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics |
author |
Martínez-Julca, Milton |
author_facet |
Martínez-Julca, Milton Nazario-Naveda, Renny Gallozzo-Cárdenas, Moises Rojas-Flores, Segundo Chinchay-Espino, Hector Alvarez-Escobedo, Amilu Murga-Torres, Emzon |
author_role |
author |
author2 |
Nazario-Naveda, Renny Gallozzo-Cárdenas, Moises Rojas-Flores, Segundo Chinchay-Espino, Hector Alvarez-Escobedo, Amilu Murga-Torres, Emzon |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Martínez-Julca, Milton Nazario-Naveda, Renny Gallozzo-Cárdenas, Moises Rojas-Flores, Segundo Chinchay-Espino, Hector Alvarez-Escobedo, Amilu Murga-Torres, Emzon |
dc.subject.es_PE.fl_str_mv |
PCA NIR spectroscopy Peruvian flours Chemometrics Maca |
topic |
PCA NIR spectroscopy Peruvian flours Chemometrics Maca https://purl.org/pe-repo/ocde/ford#2.07.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.07.00 |
description |
Nowadays, nutritional foods have a great impact on healthy diets. In particular, maca, oatmeal, broad bean, soybean, and algarrobo are widely used in different ways in the daily diets of many people due to their nutritional components. However, many of these foods share certain physical similarities with others of lower quality, making it difficult to identify them with certainty. Few studies have been conducted to find any differences using practical techniques with minimal preparation and in short durations. In this work, Principal Component Analysis (PCA) and Near Infrared Spectroscopy (NIR) were used to classify and distinguish samples based on their chemical properties. The spectral data were pretreated to further highlight the differences among the samples determined via PCA. The results indicate that the raw spectral data of all the samples had similar patterns, and their respective PCA analysis results could not be used to differentiate them. However, pretreated data differentiated the foods in separate clusters according to score plots. The main difference was a C-O band that corresponded to a vibration mode at 4644 cm−1 associated with protein content. PCA combined with spectral analysis can be used to differentiate and classify foods using small samples through the chemical properties on their surfaces. This study contributes new knowledge toward the more precise identification of foods, even if they are combined. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-03-27T17:45:20Z |
dc.date.available.none.fl_str_mv |
2024-03-27T17:45:20Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/3061 |
dc.identifier.journal.es_PE.fl_str_mv |
Applied Sciences |
url |
https://hdl.handle.net/20.500.13067/3061 |
identifier_str_mv |
Applied Sciences |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
instname_str |
Universidad Autónoma del Perú |
instacron_str |
AUTONOMA |
institution |
AUTONOMA |
reponame_str |
AUTONOMA-Institucional |
collection |
AUTONOMA-Institucional |
dc.source.volume.es_PE.fl_str_mv |
13 |
dc.source.issue.es_PE.fl_str_mv |
20 |
dc.source.beginpage.es_PE.fl_str_mv |
1 |
dc.source.endpage.es_PE.fl_str_mv |
16 |
bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/1/128.pdf http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/3/128.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/4/128.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/2/license.txt |
bitstream.checksum.fl_str_mv |
a20770edc166dab353b3e2543ac99fee ff57bb6fac3968e466270a9b870f15a3 e9d8e7c7897781af11fef06088e0d3d0 9243398ff393db1861c890baeaeee5f9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
repository.mail.fl_str_mv |
repositorio@autonoma.pe |
_version_ |
1835915391311806464 |
score |
13.889607 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).