Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics

Descripción del Articulo

Nowadays, nutritional foods have a great impact on healthy diets. In particular, maca, oatmeal, broad bean, soybean, and algarrobo are widely used in different ways in the daily diets of many people due to their nutritional components. However, many of these foods share certain physical similarities...

Descripción completa

Detalles Bibliográficos
Autores: Martínez-Julca, Milton, Nazario-Naveda, Renny, Gallozzo-Cárdenas, Moises, Rojas-Flores, Segundo, Chinchay-Espino, Hector, Alvarez-Escobedo, Amilu, Murga-Torres, Emzon
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/3061
Enlace del recurso:https://hdl.handle.net/20.500.13067/3061
Nivel de acceso:acceso abierto
Materia:PCA
NIR spectroscopy
Peruvian flours
Chemometrics
Maca
https://purl.org/pe-repo/ocde/ford#2.07.00
id AUTO_81b189a0bd004d2bdc0ce86aa7919962
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/3061
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Martínez-Julca, MiltonNazario-Naveda, RennyGallozzo-Cárdenas, MoisesRojas-Flores, SegundoChinchay-Espino, HectorAlvarez-Escobedo, AmiluMurga-Torres, Emzon2024-03-27T17:45:20Z2024-03-27T17:45:20Z2023https://hdl.handle.net/20.500.13067/3061Applied SciencesNowadays, nutritional foods have a great impact on healthy diets. In particular, maca, oatmeal, broad bean, soybean, and algarrobo are widely used in different ways in the daily diets of many people due to their nutritional components. However, many of these foods share certain physical similarities with others of lower quality, making it difficult to identify them with certainty. Few studies have been conducted to find any differences using practical techniques with minimal preparation and in short durations. In this work, Principal Component Analysis (PCA) and Near Infrared Spectroscopy (NIR) were used to classify and distinguish samples based on their chemical properties. The spectral data were pretreated to further highlight the differences among the samples determined via PCA. The results indicate that the raw spectral data of all the samples had similar patterns, and their respective PCA analysis results could not be used to differentiate them. However, pretreated data differentiated the foods in separate clusters according to score plots. The main difference was a C-O band that corresponded to a vibration mode at 4644 cm−1 associated with protein content. PCA combined with spectral analysis can be used to differentiate and classify foods using small samples through the chemical properties on their surfaces. This study contributes new knowledge toward the more precise identification of foods, even if they are combined.application/pdfengMDPIinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/PCANIR spectroscopyPeruvian floursChemometricsMacahttps://purl.org/pe-repo/ocde/ford#2.07.00Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometricsinfo:eu-repo/semantics/article1320116reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL128.pdf128.pdfArtículoapplication/pdf3309103http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/1/128.pdfa20770edc166dab353b3e2543ac99feeMD51TEXT128.pdf.txt128.pdf.txtExtracted texttext/plain51629http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/3/128.pdf.txtff57bb6fac3968e466270a9b870f15a3MD53THUMBNAIL128.pdf.jpg128.pdf.jpgGenerated Thumbnailimage/jpeg7128http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/4/128.pdf.jpge9d8e7c7897781af11fef06088e0d3d0MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/2/license.txt9243398ff393db1861c890baeaeee5f9MD5220.500.13067/3061oai:repositorio.autonoma.edu.pe:20.500.13067/30612024-03-28 03:00:39.972Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
title Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
spellingShingle Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
Martínez-Julca, Milton
PCA
NIR spectroscopy
Peruvian flours
Chemometrics
Maca
https://purl.org/pe-repo/ocde/ford#2.07.00
title_short Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
title_full Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
title_fullStr Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
title_full_unstemmed Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
title_sort Classification of Peruvian Flours via NIR Spectroscopy Combined with Chemometrics
author Martínez-Julca, Milton
author_facet Martínez-Julca, Milton
Nazario-Naveda, Renny
Gallozzo-Cárdenas, Moises
Rojas-Flores, Segundo
Chinchay-Espino, Hector
Alvarez-Escobedo, Amilu
Murga-Torres, Emzon
author_role author
author2 Nazario-Naveda, Renny
Gallozzo-Cárdenas, Moises
Rojas-Flores, Segundo
Chinchay-Espino, Hector
Alvarez-Escobedo, Amilu
Murga-Torres, Emzon
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Martínez-Julca, Milton
Nazario-Naveda, Renny
Gallozzo-Cárdenas, Moises
Rojas-Flores, Segundo
Chinchay-Espino, Hector
Alvarez-Escobedo, Amilu
Murga-Torres, Emzon
dc.subject.es_PE.fl_str_mv PCA
NIR spectroscopy
Peruvian flours
Chemometrics
Maca
topic PCA
NIR spectroscopy
Peruvian flours
Chemometrics
Maca
https://purl.org/pe-repo/ocde/ford#2.07.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.07.00
description Nowadays, nutritional foods have a great impact on healthy diets. In particular, maca, oatmeal, broad bean, soybean, and algarrobo are widely used in different ways in the daily diets of many people due to their nutritional components. However, many of these foods share certain physical similarities with others of lower quality, making it difficult to identify them with certainty. Few studies have been conducted to find any differences using practical techniques with minimal preparation and in short durations. In this work, Principal Component Analysis (PCA) and Near Infrared Spectroscopy (NIR) were used to classify and distinguish samples based on their chemical properties. The spectral data were pretreated to further highlight the differences among the samples determined via PCA. The results indicate that the raw spectral data of all the samples had similar patterns, and their respective PCA analysis results could not be used to differentiate them. However, pretreated data differentiated the foods in separate clusters according to score plots. The main difference was a C-O band that corresponded to a vibration mode at 4644 cm−1 associated with protein content. PCA combined with spectral analysis can be used to differentiate and classify foods using small samples through the chemical properties on their surfaces. This study contributes new knowledge toward the more precise identification of foods, even if they are combined.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-03-27T17:45:20Z
dc.date.available.none.fl_str_mv 2024-03-27T17:45:20Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/3061
dc.identifier.journal.es_PE.fl_str_mv Applied Sciences
url https://hdl.handle.net/20.500.13067/3061
identifier_str_mv Applied Sciences
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 13
dc.source.issue.es_PE.fl_str_mv 20
dc.source.beginpage.es_PE.fl_str_mv 1
dc.source.endpage.es_PE.fl_str_mv 16
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/1/128.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/3/128.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/4/128.pdf.jpg
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/3061/2/license.txt
bitstream.checksum.fl_str_mv a20770edc166dab353b3e2543ac99fee
ff57bb6fac3968e466270a9b870f15a3
e9d8e7c7897781af11fef06088e0d3d0
9243398ff393db1861c890baeaeee5f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915391311806464
score 13.889607
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).