Mostrando 1 - 20 Resultados de 21 Para Buscar 'Murga-Torres, Emzon', tiempo de consulta: 0.03s Limitar resultados
1
artículo
In the following investigation, concrete specimens incorporated with sugarcane bagasse fibers (SCBF) were manufactured to analyze their effects on their physical and mechanical properties. The fibers were collected from the waste generated by the sugar factories in the La Libertad region, Peru. SCBF were incorporated in different concentrations (0.5, 1, 1.5 and 2%) in the concrete mixing process. The effect of the incorporation of SCBF on the density and water absorption of the manufactured specimens were evaluated, also morphological variations were analyzed by Scanning Electron Microscopy (SEM). Likewise, the specimens were subjected to compression tests to verify their resistance. A good integration of the fibers in the concrete matrix was observed, the incorporation of SCBF produces a reduction in the number and size of pores. In addition, the increase in SCBF lightens the concrete, ...
2
artículo
Nowadays, nutritional foods have a great impact on healthy diets. In particular, maca, oatmeal, broad bean, soybean, and algarrobo are widely used in different ways in the daily diets of many people due to their nutritional components. However, many of these foods share certain physical similarities with others of lower quality, making it difficult to identify them with certainty. Few studies have been conducted to find any differences using practical techniques with minimal preparation and in short durations. In this work, Principal Component Analysis (PCA) and Near Infrared Spectroscopy (NIR) were used to classify and distinguish samples based on their chemical properties. The spectral data were pretreated to further highlight the differences among the samples determined via PCA. The results indicate that the raw spectral data of all the samples had similar patterns, and their respecti...
3
artículo
Purpose: To calculate the contribution of absorbed dose by organs in the biokinetics of Tc-99m when used for radiodiagnosis of the adult male heart employing a Matlab program. Methods: The absorbed self-dose of the adult male heart and absorbed dose by organs in the biokinetics of the heart when administering Tc-99m are estimated using the MIRD formalism and the Cristy-Eckerman representation, which have been employed to develop the algorithm in Matlab. Results: The results indicate that electron capture emissions of 1.446 (mGy/MBq) and Auger electrons of 0.062 (mGy/MBq) are entirely directed towards the target organ (heart) and contribute 29.33% and 1.25% respectively to its total dose. Additionally, the dosimetric contributions of biokinetic organs correspond to characteristic radiation emissions and gamma photons at 2.578 (mGy/MBq) for Tc-99m, representing 52.29% of its total dose. Co...
4
artículo
En la siguiente investigación se desarrollaron y analizaron compuestos de poliuretano y fibras de bagazo de caña de azúcar (SCBF) para determinar sus propiedades mecánicas y físicas. El SCBF se incorporó en diferentes concentraciones (2, 4, 6 y 8%) en espuma de poliuretano. Las características morfológicas se evaluaron mediante Microscopía Electrónica de Barrido (SEM), las espumas se sometieron a pruebas de compresión para estudiar su comportamiento de deformación, se estudió su capacidad de absorción de agua y su comportamiento térmico para transferir y almacenar calor a través de la difusividad térmica. Se observó una buena integración del SCBF en las espumas de poliuretano, aligerando los compuestos y aumentando el tamaño de poro. También se aumenta la capacidad de absorción hasta alcanzar una retención de casi 4 veces su peso para espumas de poliuretano con 4% ...
5
artículo
“The increase in the population and its need to produce food has caused the level of contamination by organic waste to increase exponentially in recent years. Innovative methods have been proposed for the use of this waste and thus to mitigate its impact. One of these is to use it as fuel in microbial fuel cells to generate electricity. This research aims to generate bioelectricity using coriander waste in microbial fuel cells. The maximum voltage and current observed were 0.882 ± 0.154 V and 2.287 ± 0.072 mA on the seventh and tenth day, respectively, these values were obtained working at an optimum operating pH of 3.9 ± 0.16 and with an electrical conductivity of 160.42 ± 4.54 mS/cm. The internal resistance observed in the cells was 75.581 ± 5.892 Ω, with a power density of 304.325 ± 16.51 mW/cm2 at 5.06 A/cm2 current density. While the intensity of the final FTIR (Fourier tra...
6
artículo
The increase in the population and its need to produce food has caused the level of contamination by organic waste to increase exponentially in recent years. Innovative methods have been proposed for the use of this waste and thus to mitigate its impact. One of these is to use it as fuel in microbial fuel cells to generate electricity. This research aims to generate bioelectricity using coriander waste in microbial fuel cells. The maximum voltage and current observed were 0.882 ± 0.154 V and 2.287 ± 0.072 mA on the seventh and tenth day, respectively, these values were obtained working at an optimum operating pH of 3.9 ± 0.16 and with an electrical conductivity of 160.42 ± 4.54 mS/cm. The internal resistance observed in the cells was 75.581 ± 5.892 Ω, with a power density of 304.325 ± 16.51 mW/cm2 at 5.06 A/cm2 current density. While the intensity of the final FTIR (Fourier trans...
7
artículo
The increase in the population and its need to produce food has caused the level of contamination by organic waste to increase exponentially in recent years. Innovative methods have been proposed for the use of this waste and thus to mitigate its impact. One of these is to use it as fuel in microbial fuel cells to generate electricity. This research aims to generate bioelectricity using coriander waste in microbial fuel cells. The maximum voltage and current observed were 0.882 ± 0.154 V and 2.287 ± 0.072 mA on the seventh and tenth day, respectively, these values were obtained working at an optimum operating pH of 3.9 ± 0.16 and with an electrical conductivity of 160.42 ± 4.54 mS/cm. The internal resistance observed in the cells was 75.581 ± 5.892 Ω, with a power density of 304.325 ± 16.51 mW/cm2 at 5.06 A/cm2 current density. While the intensity of the final FTIR (Fourier transf...
8
artículo
En la actualidad, los alimentos nutritivos tienen un gran impacto en las dietas saludables. En particular, la maca, la avena, las habas, la soja y el algarrobo se utilizan ampliamente de diferentes formas en la dieta diaria de muchas personas debido a sus componentes nutricionales. Sin embargo, muchos de estos alimentos comparten ciertas similitudes físicas con otros de menor calidad, lo que dificulta su identificación con certeza. Se han realizado pocos estudios para encontrar diferencias utilizando técnicas prácticas con una preparación mínima y en duraciones cortas. En este trabajo, se utilizó el análisis de componentes principales (PCA) y la espectroscopia de infrarrojo cercano (NIR) para clasificar y distinguir las muestras en función de sus propiedades químicas. Los datos espectrales se trataron previamente para resaltar aún más las diferencias entre las muestras determ...
9
artículo
The large amounts of organic waste thrown into the garbage without any productivity, and the increase in the demand for electrical energy worldwide, has led to the search for new eco-friendly ways of generating electricity. Because of this, microbial fuel cells have begun to be used as a technology to generate bioelectricity. The main objective of this research was to generate bioelectricity through banana waste using a low-cost laboratory-scale method, achieving the generation of maximum currents and voltages of 3.71667 ± 0.05304 mA and 1.01 ± 0.017 V, with an optimal pH of 4.023 ± 0.064 and a maximum electrical conductivity of the substrate of 182.333 ± 3.51 µS/cm. The FTIR spectra of the initial and final substrate show a decrease in the peaks belonging to phenolic compounds, alkanes, and alkenes, mainly. The maximum power density was 5736.112 ± 12.62 mW/cm2 at a current density...
10
artículo
“Agricultural waste negatively impacts the environment and generates economic difficulties for agro-industrial companies and farmers. As a result, it is necessary for an eco-friendly and sustainable alternative to managing this type of waste. Therefore, the research aimed to investigate lettuce waste as an alternative substrate to generate bioelectricity in single-chamber microbial fuel cells (scMFCs). It was possible to report voltage and electric current peaks of 0.959 ± 0.026 V and 5.697 ± 0.065 mA on the fourteenth day, values that were attained with an optimum pH of 7.867 ± 0.147 and with an electrical conductivity of 118.964 ± 8.888 mS/cm. Moreover, as time passed the values began to decline slowly. The calculated value of maximum power density was 378.145 ± 5.417 mW/cm2 whose current density was 5.965 A/cm2 , while the internal resistance reported using Ohm’s Law was 87.5...
11
artículo
Agricultural waste negatively impacts the environment and generates economic difficulties for agro-industrial companies and farmers. As a result, it is necessary for an eco-friendly and sustainable alternative to managing this type of waste. Therefore, the research aimed to investigate lettuce waste as an alternative substrate to generate bioelectricity in single-chamber microbial fuel cells (scMFCs). It was possible to report voltage and electric current peaks of 0.959 ± 0.026 V and 5.697 ± 0.065 mA on the fourteenth day, values that were attained with an optimum pH of 7.867 ± 0.147 and with an electrical conductivity of 118.964 ± 8.888 mS/cm. Moreover, as time passed the values began to decline slowly. The calculated value of maximum power density was 378.145 ± 5.417 mW/cm2 whose current density was 5.965 A/cm2 , while the internal resistance reported using Ohm’s Law was 87.594 ...
12
artículo
Agricultural waste negatively impacts the environment and generates economic difficulties for agro-industrial companies and farmers. As a result, it is necessary for an eco-friendly and sustainable alternative to managing this type of waste. Therefore, the research aimed to investigate lettuce waste as an alternative substrate to generate bioelectricity in single-chamber microbial fuel cells (scMFCs). It was possible to report voltage and electric current peaks of 0.959 ± 0.026 V and 5.697 ± 0.065 mA on the fourteenth day, values that were attained with an optimum pH of 7.867 ± 0.147 and with an electrical conductivity of 118.964 ± 8.888 mS/cm. Moreover, as time passed the values began to decline slowly. The calculated value of maximum power density was 378.145 ± 5.417 mW/cm2 whose current density was 5.965 A/cm2, while the internal resistance reported using Ohm’s Law was 87.594 Â...
13
artículo
Agricultural waste negatively impacts the environment and generates economic difficulties for agro-industrial companies and farmers. As a result, it is necessary for an eco-friendly and sustainable alternative to managing this type of waste. Therefore, the research aimed to investigate lettuce waste as an alternative substrate to generate bioelectricity in single-chamber microbial fuel cells (scMFCs). It was possible to report voltage and electric current peaks of 0.959 ± 0.026 V and 5.697 ± 0.065 mA on the fourteenth day, values that were attained with an optimum pH of 7.867 ± 0.147 and with an electrical conductivity of 118.964 ± 8.888 mS/cm. Moreover, as time passed the values began to decline slowly. The calculated value of maximum power density was 378.145 ± 5.417 mW/cm2 whose current density was 5.965 A/cm2, while the internal resistance reported using Ohm’s Law was 87.594 Â...
14
artículo
This research used tomato waste as a substrate (fuel) in Single Chamber-Microbial Fuel Cells (scMFC) on a small scale. The electrochemical properties were monitored, the functional groups of the substrate were analyzed by Fourier Transform Infrared Spectrophotometry (FTIR) and a microbiological analysis was performed on the electrodes in order to identify the microorganisms responsible for the electrochemical process. The results show voltage peaks and an electrical current of 3.647 ± 0.157 mA and 0.957 ± 0.246 V. A pH of 5.32 ± 0.26 was measured in the substrate with an electrical current conductivity of 148,701 ± 5849 mS/cm and an internal resistance (Rint) of 77. 517 ± 8.541 Ω. The maximum power density (PD) displayed was 264.72 ± 3.54 mW/cm2 at a current density (CD) of 4.388 A/cm2. On the other hand, the FTIR spectrum showed a more intense decrease in its peaks, with the comp...
15
artículo
This research aimed to use kiwi waste as fuel to generate bioelectricity through microbial fuel cells. It was possible to generate an electrical current and voltage peaks of 3.807 ± 0.102 mA and 0.993 ± 0.061 V on day 11, showing an electrical conductivity of 189.82 ± 3.029 mS/cm and an optimum operating pH of 5.966 ± 0.121. The internal resistance of the cells was calculated using Ohm’s Law, resulting in a value of 14.957 ± 0.394 Ω, while the maximum power density was 212.68 ± 26.84 mW/m2 at a current density of 4.506 A/cm2. Through the analysis of the FTIR spectra carried out on the substrate, a decrease in the characteristic organic peaks was observed due to their decomposition during the electricity-generation process. In addition, it was possible to molecularly identify the bacteria Comamonas testosteroni, Sphingobacterium sp., and Stenotropho-monas maltophila adhered to th...
16
artículo
“This research used tomato waste as a substrate (fuel) in Single Chamber-Microbial Fuel Cells (scMFC) on a small scale. The electrochemical properties were monitored, the functional groups of the substrate were analyzed by Fourier Transform Infrared Spectrophotometry (FTIR) and a microbiological analysis was performed on the electrodes in order to identify the microorganisms responsible for the electrochemical process. The results show voltage peaks and an electrical current of 3.647 ± 0.157 mA and 0.957 ± 0.246 V. A pH of 5.32 ± 0.26 was measured in the substrate with an electrical current conductivity of 148,701 ± 5849 mS/cm and an internal resistance (Rint) of 77. 517 ± 8.541 Ω. The maximum power density (PD) displayed was 264.72 ± 3.54 mW/cm2 at a current density (CD) of 4.388 A/cm2 . On the other hand, the FTIR spectrum showed a more intense decrease in its peaks, with the ...
17
artículo
This research aimed to use kiwi waste as fuel to generate bioelectricity through microbial fuel cells. It was possible to generate an electrical current and voltage peaks of 3.807 ± 0.102 mA and 0.993 ± 0.061 V on day 11, showing an electrical conductivity of 189.82 ± 3.029 mS/cm and an optimum operating pH of 5.966 ± 0.121. The internal resistance of the cells was calculated using Ohm’s Law, resulting in a value of 14.957 ± 0.394 Ω, while the maximum power density was 212.68 ± 26.84 mW/m2 at a current density of 4.506 A/cm2. Through the analysis of the FTIR spectra carried out on the substrate, a decrease in the characteristic organic peaks was observed due to their decomposition during the electricity-generation process. In addition, it was possible to molecularly identify the bacteria Comamonas testosteroni, Sphingobacterium sp., and Stenotropho-monas maltophila adhered to th...
18
artículo
his research used tomato waste as a substrate (fuel) in Single Chamber-Microbial Fuel Cells (scMFC) on a small scale. The electrochemical properties were monitored, the functional groups of the substrate were analyzed by Fourier Transform Infrared Spectrophotometry (FTIR) and a microbiological analysis was performed on the electrodes in order to identify the microorganisms responsible for the electrochemical process. The results show voltage peaks and an electrical current of 3.647 ± 0.157 mA and 0.957 ± 0.246 V. A pH of 5.32 ± 0.26 was measured in the substrate with an electrical current conductivity of 148,701 ± 5849 mS/cm and an internal resistance (Rint) of 77. 517 ± 8.541 Ω. The maximum power density (PD) displayed was 264.72 ± 3.54 mW/cm2 at a current density (CD) of 4.388 A/cm2. On the other hand, the FTIR spectrum showed a more intense decrease in its peaks, with the compo...
19
artículo
This research aimed to use kiwi waste as fuel to generate bioelectricity through microbial fuel cells. It was possible to generate an electrical current and voltage peaks of 3.807 ± 0.102 mA and 0.993 ± 0.061 V on day 11, showing an electrical conductivity of 189.82 ± 3.029 mS/cm and an optimum operating pH of 5.966 ± 0.121. The internal resistance of the cells was calculated using Ohm’s Law, resulting in a value of 14.957 ± 0.394 Ω, while the maximum power density was 212.68 ± 26.84 mW/m2 at a current density of 4.506 A/cm2. Through the analysis of the FTIR spectra carried out on the substrate, a decrease in the characteristic organic peaks was observed due to their decomposition during the electricity-generation process. In addition, it was possible to molecularly identify the bacteria Comamonas testosteroni, Sphingobacterium sp., and Stenotropho-monas maltophila adhered to th...
20
artículo
This research used tomato waste as a substrate (fuel) in Single Chamber-Microbial Fuel Cells (scMFC) on a small scale. The electrochemical properties were monitored, the functional groups of the substrate were analyzed by Fourier Transform Infrared Spectrophotometry (FTIR) and a microbiological analysis was performed on the electrodes in order to identify the microorganisms responsible for the electrochemical process. The results show voltage peaks and an electrical current of 3.647 ± 0.157 mA and 0.957 ± 0.246 V. A pH of 5.32 ± 0.26 was measured in the substrate with an electrical current conductivity of 148,701 ± 5849 mS/cm and an internal resistance (Rint) of 77. 517 ± 8.541 Ω. The maximum power density (PD) displayed was 264.72 ± 3.54 mW/cm2 at a current density (CD) of 4.388 A/cm2. On the other hand, the FTIR spectrum showed a more intense decrease in its peaks, with the comp...