A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users

Descripción del Articulo

The large branches of Machine Learning represent an immense support for the detection of malicious websites, they can predict whether a URL is malicious or benign, leaving aside the cyber attacks that can generate for net-work users who are unaware of them. The objective of the research was to know...

Descripción completa

Detalles Bibliográficos
Autores: Gamboa-Cruzado, Javier, Briceño-Ochoa, Juan, Huaysara-Ancco, Marco, Alva-Arévalo, Alberto, Ríos-Vargas, Caleb, Arangüena Yllanes, Magaly, Rodriguez-Baca, Liset S.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/2833
Enlace del recurso:https://hdl.handle.net/20.500.13067/2833
https://doi.org/10.3991/ijim.v17i01.36371
Nivel de acceso:acceso abierto
Materia:Machine learning
Neural networks
Web site detection
Malicious web sites
Algorithms
Systematic literature review
https://purl.org/pe-repo/ocde/ford#2.02.04
id AUTO_1217c27a8fecd8875309b1ed92bf654d
oai_identifier_str oai:repositorio.autonoma.edu.pe:20.500.13067/2833
network_acronym_str AUTO
network_name_str AUTONOMA-Institucional
repository_id_str 4774
spelling Gamboa-Cruzado, JavierBriceño-Ochoa, JuanHuaysara-Ancco, MarcoAlva-Arévalo, AlbertoRíos-Vargas, CalebArangüena Yllanes, MagalyRodriguez-Baca, Liset S.2023-11-30T21:19:54Z2023-11-30T21:19:54Z2023https://hdl.handle.net/20.500.13067/2833International Journal of Interactive Mobile Technologies (iJIM)https://doi.org/10.3991/ijim.v17i01.36371The large branches of Machine Learning represent an immense support for the detection of malicious websites, they can predict whether a URL is malicious or benign, leaving aside the cyber attacks that can generate for net-work users who are unaware of them. The objective of the research was to know the state of the art about Neural Networks and their impact for the Detection of malicious Websites in network users. For this purpose, a systematic literature review (SLR) was conducted from 2017 to 2021. The search identified 561 963 papers from different sources such as Taylor & Francis Online, IEEE Xplore, ARDI, ScienceDirect, Wiley Online Library, ACM Digital Library and Microsoft Academic. Of the papers only 82 were considered based on exclusion criteria formulated by the author. As a result of the SLR, studies focused on machine learning (ML), where it recommends the use of algorithms to have a better and efficient prediction of malicious websites. For the researchers, this review pre-sents a mapping of the findings on the most used machine learning techniques for malicious website detection, which are essential for a study because they in-crease the accuracy of an algorithm. It also shows the main machine learning methodologies that are used in the research papersapplication/pdfengInternational Journal of Interactive Mobile Technologies (iJIM)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Machine learningNeural networksWeb site detectionMalicious web sitesAlgorithmsSystematic literature reviewhttps://purl.org/pe-repo/ocde/ford#2.02.04A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Usersinfo:eu-repo/semantics/article171108128reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAORIGINAL21_2023.pdf21_2023.pdfArtículoapplication/pdf2351371http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/1/21_2023.pdf18619953c5807dbbb162a076837d2435MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/2/license.txt9243398ff393db1861c890baeaeee5f9MD52TEXT21_2023.pdf.txt21_2023.pdf.txtExtracted texttext/plain50689http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/3/21_2023.pdf.txtb35cb77f740ade29a1f12ec7b2d5c34fMD53THUMBNAIL21_2023.pdf.jpg21_2023.pdf.jpgGenerated Thumbnailimage/jpeg4669http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/4/21_2023.pdf.jpgfe2e2e7b6948b24ed37a76a784fdd881MD5420.500.13067/2833oai:repositorio.autonoma.edu.pe:20.500.13067/28332023-12-01 03:00:33.524Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.peVG9kb3MgbG9zIGRlcmVjaG9zIHJlc2VydmFkb3MgcG9yOg0KVU5JVkVSU0lEQUQgQVVUw5NOT01BIERFTCBQRVLDmg0KQ1JFQVRJVkUgQ09NTU9OUw==
dc.title.es_PE.fl_str_mv A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
title A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
spellingShingle A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
Gamboa-Cruzado, Javier
Machine learning
Neural networks
Web site detection
Malicious web sites
Algorithms
Systematic literature review
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
title_full A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
title_fullStr A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
title_full_unstemmed A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
title_sort A Comprehensive Systematic Review of Neural Networks and Their Impact on the Detection of Malicious Websites in Network Users
author Gamboa-Cruzado, Javier
author_facet Gamboa-Cruzado, Javier
Briceño-Ochoa, Juan
Huaysara-Ancco, Marco
Alva-Arévalo, Alberto
Ríos-Vargas, Caleb
Arangüena Yllanes, Magaly
Rodriguez-Baca, Liset S.
author_role author
author2 Briceño-Ochoa, Juan
Huaysara-Ancco, Marco
Alva-Arévalo, Alberto
Ríos-Vargas, Caleb
Arangüena Yllanes, Magaly
Rodriguez-Baca, Liset S.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gamboa-Cruzado, Javier
Briceño-Ochoa, Juan
Huaysara-Ancco, Marco
Alva-Arévalo, Alberto
Ríos-Vargas, Caleb
Arangüena Yllanes, Magaly
Rodriguez-Baca, Liset S.
dc.subject.es_PE.fl_str_mv Machine learning
Neural networks
Web site detection
Malicious web sites
Algorithms
Systematic literature review
topic Machine learning
Neural networks
Web site detection
Malicious web sites
Algorithms
Systematic literature review
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The large branches of Machine Learning represent an immense support for the detection of malicious websites, they can predict whether a URL is malicious or benign, leaving aside the cyber attacks that can generate for net-work users who are unaware of them. The objective of the research was to know the state of the art about Neural Networks and their impact for the Detection of malicious Websites in network users. For this purpose, a systematic literature review (SLR) was conducted from 2017 to 2021. The search identified 561 963 papers from different sources such as Taylor & Francis Online, IEEE Xplore, ARDI, ScienceDirect, Wiley Online Library, ACM Digital Library and Microsoft Academic. Of the papers only 82 were considered based on exclusion criteria formulated by the author. As a result of the SLR, studies focused on machine learning (ML), where it recommends the use of algorithms to have a better and efficient prediction of malicious websites. For the researchers, this review pre-sents a mapping of the findings on the most used machine learning techniques for malicious website detection, which are essential for a study because they in-crease the accuracy of an algorithm. It also shows the main machine learning methodologies that are used in the research papers
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-30T21:19:54Z
dc.date.available.none.fl_str_mv 2023-11-30T21:19:54Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13067/2833
dc.identifier.journal.es_PE.fl_str_mv International Journal of Interactive Mobile Technologies (iJIM)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3991/ijim.v17i01.36371
url https://hdl.handle.net/20.500.13067/2833
https://doi.org/10.3991/ijim.v17i01.36371
identifier_str_mv International Journal of Interactive Mobile Technologies (iJIM)
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Journal of Interactive Mobile Technologies (iJIM)
dc.source.none.fl_str_mv reponame:AUTONOMA-Institucional
instname:Universidad Autónoma del Perú
instacron:AUTONOMA
instname_str Universidad Autónoma del Perú
instacron_str AUTONOMA
institution AUTONOMA
reponame_str AUTONOMA-Institucional
collection AUTONOMA-Institucional
dc.source.volume.es_PE.fl_str_mv 17
dc.source.issue.es_PE.fl_str_mv 1
dc.source.beginpage.es_PE.fl_str_mv 108
dc.source.endpage.es_PE.fl_str_mv 128
bitstream.url.fl_str_mv http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/1/21_2023.pdf
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/2/license.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/3/21_2023.pdf.txt
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/2833/4/21_2023.pdf.jpg
bitstream.checksum.fl_str_mv 18619953c5807dbbb162a076837d2435
9243398ff393db1861c890baeaeee5f9
b35cb77f740ade29a1f12ec7b2d5c34f
fe2e2e7b6948b24ed37a76a784fdd881
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Autonoma del Perú
repository.mail.fl_str_mv repositorio@autonoma.pe
_version_ 1835915380293369856
score 13.927358
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).