Trends in application of NIR and hyperspectral imaging for food authentication
Descripción del Articulo
Food fraud can cause damage to consumer health and affect their confidence, destroy brands and generate large economic losses in the industry. Food authenticity allows to identify if food composition, geographical origin, genetic variety and farming system corresponds to what has been declared on th...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revista UNITRU - Scientia Agropecuaria |
| Lenguaje: | español inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/2328 |
| Enlace del recurso: | http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2328 |
| Nivel de acceso: | acceso abierto |
| Materia: | food fraud spectroscopy discrimination regression. |
| id |
2411-1783_b16a1f368f4dd334a632277c0c6cb9c1 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/2328 |
| network_acronym_str |
2411-1783 |
| repository_id_str |
. |
| network_name_str |
Revista UNITRU - Scientia Agropecuaria |
| spelling |
Trends in application of NIR and hyperspectral imaging for food authenticationMendez, JeffreyMendoza, LizCruz-Tirado, J.P.Quevedo, RobertoSiche, Raúlfood fraudspectroscopydiscriminationregression.Food fraud can cause damage to consumer health and affect their confidence, destroy brands and generate large economic losses in the industry. Food authenticity allows to identify if food composition, geographical origin, genetic variety and farming system corresponds to what has been declared on the label. Although there are currently standardized methods to identify certain adulterants, the complexity of the food, the complexity of the supply chain and the appearance of new adulterants require the continuous development of analytical techniques to detect food fraud. NIR and Hyperspectral imaging (HSI) in tandem with chemometrics are non-destructive, non-invasive and accurate techniques for food authentication. This review focuses on NIR and HIS approaches to food authentication, including adulteration by substitution, geographical origin and farming system. In this context, the advances in NIR and HSI approaches reported since 2014 are discussed regarding their potential use in food authentication. Both techniques have shown to have efficiency, precision and selectivity to detect adulterants and identify geographic origin, genetic variety and farming system. Portability and remote access are shown as the next step for the industrialization of NIR and HSI devices.Universidad Nacional de Trujillo2019-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/232810.17268/sci.agropecu.2019.01.16Scientia Agropecuaria; Vol. 10 No. 1 (2019): Enero-Marzo; 143-161Scientia Agropecuaria; Vol. 10 Núm. 1 (2019): Enero-Marzo; 143-1612306-67412077-9917reponame:Revista UNITRU - Scientia Agropecuariainstname:Universidad Nacional de Trujilloinstacron:UNITRUspaenghttp://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2328/2215http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2328/3116Derechos de autor 2019 Scientia Agropecuariainfo:eu-repo/semantics/openAccess2021-06-01T15:35:30Zmail@mail.com - |
| dc.title.none.fl_str_mv |
Trends in application of NIR and hyperspectral imaging for food authentication |
| title |
Trends in application of NIR and hyperspectral imaging for food authentication |
| spellingShingle |
Trends in application of NIR and hyperspectral imaging for food authentication Mendez, Jeffrey food fraud spectroscopy discrimination regression. |
| title_short |
Trends in application of NIR and hyperspectral imaging for food authentication |
| title_full |
Trends in application of NIR and hyperspectral imaging for food authentication |
| title_fullStr |
Trends in application of NIR and hyperspectral imaging for food authentication |
| title_full_unstemmed |
Trends in application of NIR and hyperspectral imaging for food authentication |
| title_sort |
Trends in application of NIR and hyperspectral imaging for food authentication |
| dc.creator.none.fl_str_mv |
Mendez, Jeffrey Mendoza, Liz Cruz-Tirado, J.P. Quevedo, Roberto Siche, Raúl |
| author |
Mendez, Jeffrey |
| author_facet |
Mendez, Jeffrey Mendoza, Liz Cruz-Tirado, J.P. Quevedo, Roberto Siche, Raúl |
| author_role |
author |
| author2 |
Mendoza, Liz Cruz-Tirado, J.P. Quevedo, Roberto Siche, Raúl |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
food fraud spectroscopy discrimination regression. |
| topic |
food fraud spectroscopy discrimination regression. |
| dc.description.none.fl_txt_mv |
Food fraud can cause damage to consumer health and affect their confidence, destroy brands and generate large economic losses in the industry. Food authenticity allows to identify if food composition, geographical origin, genetic variety and farming system corresponds to what has been declared on the label. Although there are currently standardized methods to identify certain adulterants, the complexity of the food, the complexity of the supply chain and the appearance of new adulterants require the continuous development of analytical techniques to detect food fraud. NIR and Hyperspectral imaging (HSI) in tandem with chemometrics are non-destructive, non-invasive and accurate techniques for food authentication. This review focuses on NIR and HIS approaches to food authentication, including adulteration by substitution, geographical origin and farming system. In this context, the advances in NIR and HSI approaches reported since 2014 are discussed regarding their potential use in food authentication. Both techniques have shown to have efficiency, precision and selectivity to detect adulterants and identify geographic origin, genetic variety and farming system. Portability and remote access are shown as the next step for the industrialization of NIR and HSI devices. |
| description |
Food fraud can cause damage to consumer health and affect their confidence, destroy brands and generate large economic losses in the industry. Food authenticity allows to identify if food composition, geographical origin, genetic variety and farming system corresponds to what has been declared on the label. Although there are currently standardized methods to identify certain adulterants, the complexity of the food, the complexity of the supply chain and the appearance of new adulterants require the continuous development of analytical techniques to detect food fraud. NIR and Hyperspectral imaging (HSI) in tandem with chemometrics are non-destructive, non-invasive and accurate techniques for food authentication. This review focuses on NIR and HIS approaches to food authentication, including adulteration by substitution, geographical origin and farming system. In this context, the advances in NIR and HSI approaches reported since 2014 are discussed regarding their potential use in food authentication. Both techniques have shown to have efficiency, precision and selectivity to detect adulterants and identify geographic origin, genetic variety and farming system. Portability and remote access are shown as the next step for the industrialization of NIR and HSI devices. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-04-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2328 10.17268/sci.agropecu.2019.01.16 |
| url |
http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2328 |
| identifier_str_mv |
10.17268/sci.agropecu.2019.01.16 |
| dc.language.none.fl_str_mv |
spa eng |
| language |
spa eng |
| dc.relation.none.fl_str_mv |
http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2328/2215 http://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/2328/3116 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2019 Scientia Agropecuaria info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2019 Scientia Agropecuaria |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 10 No. 1 (2019): Enero-Marzo; 143-161 Scientia Agropecuaria; Vol. 10 Núm. 1 (2019): Enero-Marzo; 143-161 2306-6741 2077-9917 reponame:Revista UNITRU - Scientia Agropecuaria instname:Universidad Nacional de Trujillo instacron:UNITRU |
| reponame_str |
Revista UNITRU - Scientia Agropecuaria |
| collection |
Revista UNITRU - Scientia Agropecuaria |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| repository.name.fl_str_mv |
-
|
| repository.mail.fl_str_mv |
mail@mail.com |
| _version_ |
1701379323021230080 |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).