Singularidad de la polar de una curva plana irreducible en K(2p,2q,2pq+d)

Descripción del Articulo

Veremos que existe un abierto de Zariski en el conjunto de curvas planas irreducibles con exponentes característicos 2p; 2q y 2q+d, dado por K(2p; 2q; 2q+d) con mcd{p,q} = 1 y d impar, donde la polar es no degenerada, su topología es constante y determinada apenas por p y q.
Detalles Bibliográficos
Autor: Hernández Iglesias, Mauro Fernando
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revista UNMSM - Pesquimat
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/15758
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/matema/article/view/15758
Nivel de acceso:acceso abierto
Materia:No degenerate; Singularity; Newton Polygon
No degenerada; Singularidad; Polígono de Newton
Descripción
Sumario:Veremos que existe un abierto de Zariski en el conjunto de curvas planas irreducibles con exponentes característicos 2p; 2q y 2q+d, dado por K(2p; 2q; 2q+d) con mcd{p,q} = 1 y d impar, donde la polar es no degenerada, su topología es constante y determinada apenas por p y q.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).