1
artículo
We evaluate the benefits of the use of a regional coupled model over its stand-alone atmospheric component when forced by reanalysis data in the simulation of the South American climate. We find that the coupling allows for a better simulation of important features of the atmospheric circulation and surface temperature. The simulated 2 meters air temperature is improved over most of the continent, the sea level pressure over the South Pacific Anticyclone area is better represented in the coupled simulation and the location of the ITCZ is improved during the austral winter. The precipitation, especially over the Andes, benefits less from the coupling, although a more realistic humidity transport leads to a reduction of the precipitation biases over extensive regions. The austral summer precipitation bias is reduced in areas such as eastern Colombia, northern Bolivia, eastern Brazil and ce...
2
artículo
Runoff from glacierised Andean river basins is essential for sustaining the livelihoods of millions of people. By running a highresolution climate model over the two most glacierised regions of Peru we unravel past climatic trends in precipitation and temperature. Future changes are determined from an ensemble of statistically downscaled global climate models. Projections under the high emissions scenario suggest substantial increases in temperature of 3.6 °C and 4.1 °C in the two regions, accompanied by a 12% precipitation increase by the late 21st century. Crucially, significant increases in precipitation extremes (around 75% for total precipitation on very wet days) occur together with an intensification of meteorological droughts caused by increased evapotranspiration. Despite higher precipitation, glacier mass losses are enhanced under both the highest emission and stabilization e...