Mostrando 1 - 2 Resultados de 2 Para Buscar 'Fabián, Junior', tiempo de consulta: 0.19s Limitar resultados
1
artículo
In recent decades, the number of traffic accidents due to fatigue or drowsiness of the driver has caused significant human and material losses. At the same time, the sale in the vehicle fleet has been massified, which indicates thatpossibly in the following years, if the pertinent measures are not taken to detect fatigue, there will be an increase in automobile accidents. Therefore, in this research study, the development of a fatigue detection system in drivers that allows alerting about their status while driving using artificial vision and machine learning techniques is proposed. The techniques of these two fields of study are intercepted to generate supervised models with high performance when classifying the state of fatigue in drivers. In this study, a dataset of frontal images focusing on the physiological characteristics of the eyes was used; obtaining promising preliminary resul...
2
objeto de conferencia
El SARS-CoV-2, que causa la enfermedad del COVID-19, es un virus que se ha expandido rápidamente por el mundo, teniendo como lugar de inicio la ciudad de Wuhan, en China. A la fecha se han detectado más de 36 738 525 casos a nivel mundial. La tasa de infectados aumenta diariamente y la capacidad sanitaria no se da abasto. Por estas razones, se ha venido proponiendo una variedad de métodos para identificar el novel coronavirus con mayor rapidez y a menor costo. Un ejemplo de estos métodos para identificar la enfermedad es el COVID-Net, una red convolucional que identifica el COVID-19, neumonía o pulmones en condición normal. En este trabajo se propone una metodología para identificar y clasifi car imágenes de radiografías de tórax que tienen el COVID-19, neumonía o sin condición. Para esto se utilizaron extractores de características intermedias: HOG+PCA, SIFT+K-means y SURF+...