Detección del estado fisiológico de los ojos en conductores mediante técnicas de visión artificial

Descripción del Articulo

In recent decades, the number of traffic accidents due to fatigue or drowsiness of the driver has caused significant human and material losses. At the same time, the sale in the vehicle fleet has been massified, which indicates thatpossibly in the following years, if the pertinent measures are not t...

Descripción completa

Detalles Bibliográficos
Autores: Ale Ale, Neisser, Fabián, Junior
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3303
Enlace del recurso:https://hdl.handle.net/20.500.12640/3303
https://doi.org/10.4067/S0718-33052019000400564
Nivel de acceso:acceso abierto
Materia:Fatigue detection
Artificial vision
Machine learning
HOG descriptor
CEW dataset
Detección de fatiga
Visión artificial
Descriptor HOG
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:In recent decades, the number of traffic accidents due to fatigue or drowsiness of the driver has caused significant human and material losses. At the same time, the sale in the vehicle fleet has been massified, which indicates thatpossibly in the following years, if the pertinent measures are not taken to detect fatigue, there will be an increase in automobile accidents. Therefore, in this research study, the development of a fatigue detection system in drivers that allows alerting about their status while driving using artificial vision and machine learning techniques is proposed. The techniques of these two fields of study are intercepted to generate supervised models with high performance when classifying the state of fatigue in drivers. In this study, a dataset of frontal images focusing on the physiological characteristics of the eyes was used; obtaining promising preliminary results in the detection of fatigue in real-time.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).