Mostrando 1 - 8 Resultados de 8 Para Buscar 'Endress E.', tiempo de consulta: 0.02s Limitar resultados
1
artículo
The authors gratefully acknowledge DGI-PUCP for financial sup-port under Grants No. DGI-2015-192 and DGI-2017-3-0019, as wellas CONCYTEC under Grant No. FONDECYT-2013-102. The authorswish to thank the FLUKA scientific committee for useful commentsand suggestions, Jose Fernandes and Francisco Rumiche for the SEMmeasurements and Jorge Andrés Guerra, Patrizia Pereyra and DanielPalacios for useful discussions.
2
artículo
This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy (DOE) Award No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support was also granted by the United States National Science Foundation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior fundacao do Ministerio da Educacao (CAPES) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (Brazil), Consejo Nacional de Ciencia y Tecnologia (CoNaCyT) (Mexico), Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), programs including Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) (Chile), by Consejo Nacional de Ciencia, Tecnologia e Innovacion Tecnologica (CONCYTE...
3
artículo
Neutral-current production of Kþ by atmospheric neutrinos is a background in searches for the proton decay p → Kþν¯. Reactions such as νp → νKþΛ are indistinguishable from proton decays when the decay products of the Λ are below detection threshold. Events with Kþ are identified in MINERvA by reconstructing the timing signature of a Kþ decay at rest. A sample of 201 neutrino-induced neutral-current Kþ events is used to measure differential cross sections with respect to the Kþ kinetic energy, and the nonKþ hadronic visible energy. An excess of events at low hadronic visible energy is observed relative to the prediction of the NEUT event generator. Good agreement is observed with the cross section prediction of the GENIE generator. A search for photons from π0 decay, which would veto a neutral-current Kþ event in a proton decay search, is performed, and a 2σ deficit o...
4
artículo
This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support was also granted by the United States National Science Foundation under Award No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (U.S.A.), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), and by Latin American Center for Physics (CLAF). We thank the MINOS Collaboration for use of its near detector data. We acknowledge the dedicated work of the Fermilab staff responsible for the operation and maintenance of the beam line and detector, and we thank the Fermilab Computing Division for support of data processing.
5
artículo
The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2–50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeVenergies. The cross section measurements presented are the most precise mea...
6
artículo
This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support was also granted by the United States National Science Foundation under Award No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), and by Latin American Center for Physics (CLAF). We thank the MINOS Collaboration for use of its near detector data. We acknowledge the dedicated work of the Fermilab staff responsible for the operation and maintenance of the NuMI beamline, MINERvA and MINOS detectors and the physical and software environments that support scientific computing at Fermilab.
7
artículo
We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2–22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a subsample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12–22 GeV.We also report onthe antineutrino-neutrino cross section ratio, RCC, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of âˆ...
8
artículo
The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current Ï€0 production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26 0.02ðstat.Þ 0.08ðsys:Þ × 10−39 cm2. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive Ï€0 production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino-oscillation experiments searching for Î...