1
artículo
Publicado 1998
Enlace
Enlace
Condiciones suficientes son dadas de modo que soluciones del problema de valor inicial en la frontera para un sistema acoplado de Kirchhoff no existan para todo t > 0.
2
artículo
El autor no presenta resumen al respecto.
3
artículo
Publicado 1998
Enlace
Enlace
Condiciones suficientes son dadas de modo que soluciones del problema de valor inicial en la frontera para un sistema acoplado de Kirchhoff no existan para todo t > 0.
4
artículo
Publicado 2007
Enlace
Enlace
The objective of this paper is to study the reduction of an epidemiological simple SI given originally in partial differential equations into a model in delay differential equations. Originally, the population is divided in juvenile and adult groups. We assume that only the adult population is sexually active and that it is possible that infected adults may produce susceptible newborns and infected newborns. The global stability of the SI model in Delay Equations is studied in López-Cruz [5]
5
artículo
Publicado 2010
Enlace
Enlace
In present work, we study the existence and uniqueness of local solutions for the mixed problem relative to a system of viscoelastic nonlinear Kirchhoff's equation with dissipative term.
6
artículo
Publicado 2007
Enlace
Enlace
The objective of this paper is to study the reduction of an epidemiological simple SI given originally in partial differential equations into a model in delay differential equations. Originally, the population is divided in juvenile and adult groups. We assume that only the adult population is sexually active and that it is possible that infected adults may produce susceptible newborns and infected newborns. The global stability of the SI model in Delay Equations is studied in López-Cruz [5]
7
artículo
Publicado 2010
Enlace
Enlace
In present work, we study the existence and uniqueness of local solutions for the mixed problem relative to a system of viscoelastic nonlinear Kirchhoff's equation with dissipative term.
8
artículo
We prove the existence of solution for a mathematic model of diffusion of a contaminant using the Nonlinear Semigroups Theory, by means of afin operators. We also study a realistic model by means of satura tíon effects.
9
artículo
We prove the existence of solution for a mathematic model of diffusion of a contaminant using the Nonlinear Semigroups Theory, by means of afin operators. We also study a realistic model by means of satura tíon effects.