Mostrando 1 - 6 Resultados de 6 Para Buscar 'Abanto-Valle, Carlos', tiempo de consulta: 1.55s Limitar resultados
1
2
artículo
This article begins with an introduction to the literature on time-varying volatility models and briefly addresses the Bayesian implementation of the ARCH/GARCH/EGARCH class of models. Likewise, an application using the return series of the Return Index of the Lima Stock Exchange (IBVL) is presented and, finally, different specifications of the GARCH/EGARCH class of models are compared using the DIC criterion.
3
documento de trabajo
The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the SVM model applying Hidden Markov Models (HMM) machinery to make possible Bayesian inference in real-time. We sample from then posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importanc sampling (IS). The frequentist properties of estimators is anlyzed conducting a simulation study. The second goal is to provide empirical evidence estima...
4
artículo
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by u...
5
artículo
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered he...
6
artículo
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered he...