“Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“

Descripción del Articulo

“This research aims to cover a need to be able to classify according to the funds of eyes in diabetic retinopathy disease, how to convert to gray tone, perform an equalization, apply the canny edge highlighting algorithm and apply morphological operations so that a SOM (self-organization ma p ) neur...

Descripción completa

Detalles Bibliográficos
Autores: Huarote Zegarra, Raúl Eduardo, Vega Luján, Yensi, Flores Masías, Edward José, lCuba Aguilar, Cesar Rau, Llanos Chacaltana, Katherine Susan, Larios Franco, Alfredo Cesar, Diaz Reategui, Monica
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Privada Norbert Wiener
Repositorio:UWIENER-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uwiener.edu.pe:20.500.13053/7949
Enlace del recurso:https://hdl.handle.net/20.500.13053/7949
http://dx.doi.org/10.18687/LACCEI2022.1.1.578
Nivel de acceso:acceso abierto
Materia:"Strategy, SOM neural network, eyes, glaucoma, diabetic retinopathy."
http://purl.org/pe-repo/ocde/ford#1.02.00
id UWIE_b92fd5114c12ab8f4d841c0e32a95f2c
oai_identifier_str oai:repositorio.uwiener.edu.pe:20.500.13053/7949
network_acronym_str UWIE
network_name_str UWIENER-Institucional
repository_id_str 9398
dc.title.es_ES.fl_str_mv “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
title “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
spellingShingle “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
Huarote Zegarra, Raúl Eduardo
"Strategy, SOM neural network, eyes, glaucoma, diabetic retinopathy."
http://purl.org/pe-repo/ocde/ford#1.02.00
title_short “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
title_full “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
title_fullStr “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
title_full_unstemmed “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
title_sort “Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“
author Huarote Zegarra, Raúl Eduardo
author_facet Huarote Zegarra, Raúl Eduardo
Vega Luján, Yensi
Flores Masías, Edward José
lCuba Aguilar, Cesar Rau
Llanos Chacaltana, Katherine Susan
Larios Franco, Alfredo Cesar
Diaz Reategui, Monica
author_role author
author2 Vega Luján, Yensi
Flores Masías, Edward José
lCuba Aguilar, Cesar Rau
Llanos Chacaltana, Katherine Susan
Larios Franco, Alfredo Cesar
Diaz Reategui, Monica
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Huarote Zegarra, Raúl Eduardo
Vega Luján, Yensi
Flores Masías, Edward José
lCuba Aguilar, Cesar Rau
Llanos Chacaltana, Katherine Susan
Larios Franco, Alfredo Cesar
Diaz Reategui, Monica
dc.subject.es_ES.fl_str_mv "Strategy, SOM neural network, eyes, glaucoma, diabetic retinopathy."
topic "Strategy, SOM neural network, eyes, glaucoma, diabetic retinopathy."
http://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.02.00
description “This research aims to cover a need to be able to classify according to the funds of eyes in diabetic retinopathy disease, how to convert to gray tone, perform an equalization, apply the canny edge highlighting algorithm and apply morphological operations so that a SOM (self-organization ma p ) neural network can be entered and classified. To achieve this, it is classified as 0 to diabetic retinopathy, 1 to glaucoma and 3 to healthy eyes. To corroborate this strategy, a public database of Fundus-images has been taken, being 45 images of eyes for training and for tests 15 images that were not part of the training were used and for the tests 3 images that were not part of the training were used and each grayscale image is scaled to a dimension of 256x256 pixels, managing to demonstrate with this strategy an affectivity of 93.7% certainty in the identification of class of eye disease“
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-03-06T15:54:39Z
dc.date.available.none.fl_str_mv 2023-03-06T15:54:39Z
dc.date.issued.fl_str_mv 2022-07-18
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_ES.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.13053/7949
dc.identifier.doi.es_ES.fl_str_mv http://dx.doi.org/10.18687/LACCEI2022.1.1.578
url https://hdl.handle.net/20.500.13053/7949
http://dx.doi.org/10.18687/LACCEI2022.1.1.578
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.publisher.country.es_ES.fl_str_mv US
dc.source.none.fl_str_mv reponame:UWIENER-Institucional
instname:Universidad Privada Norbert Wiener
instacron:UWIENER
instname_str Universidad Privada Norbert Wiener
instacron_str UWIENER
institution UWIENER
reponame_str UWIENER-Institucional
collection UWIENER-Institucional
bitstream.url.fl_str_mv https://dspace-uwiener.metabuscador.org/bitstreams/93d9832b-25a4-4b4d-9cf9-7c7c1b199072/download
https://dspace-uwiener.metabuscador.org/bitstreams/2d8545d9-c02a-4156-89c6-d19351f1ea45/download
https://dspace-uwiener.metabuscador.org/bitstreams/a49208e0-9307-4c75-8bfd-07d3db381d06/download
https://dspace-uwiener.metabuscador.org/bitstreams/fc940b0c-0b68-4321-9aa1-ffdf26144266/download
bitstream.checksum.fl_str_mv 351482ced9cf59c78664834e2e7db7fe
8a4605be74aa9ea9d79846c1fba20a33
d559081cdc5b3e85f396d7f248c3fd33
1f6bd39fe509334b6ed08cf341dddee9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Wiener
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1835828722475728896
spelling Huarote Zegarra, Raúl EduardoVega Luján, YensiFlores Masías, Edward JosélCuba Aguilar, Cesar RauLlanos Chacaltana, Katherine SusanLarios Franco, Alfredo CesarDiaz Reategui, Monica2023-03-06T15:54:39Z2023-03-06T15:54:39Z2022-07-18https://hdl.handle.net/20.500.13053/7949http://dx.doi.org/10.18687/LACCEI2022.1.1.578“This research aims to cover a need to be able to classify according to the funds of eyes in diabetic retinopathy disease, how to convert to gray tone, perform an equalization, apply the canny edge highlighting algorithm and apply morphological operations so that a SOM (self-organization ma p ) neural network can be entered and classified. To achieve this, it is classified as 0 to diabetic retinopathy, 1 to glaucoma and 3 to healthy eyes. To corroborate this strategy, a public database of Fundus-images has been taken, being 45 images of eyes for training and for tests 15 images that were not part of the training were used and for the tests 3 images that were not part of the training were used and each grayscale image is scaled to a dimension of 256x256 pixels, managing to demonstrate with this strategy an affectivity of 93.7% certainty in the identification of class of eye disease“application/pdfspaLatin American and Caribbean Consortium of Engineering InstitutionsUSinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/"Strategy, SOM neural network, eyes, glaucoma, diabetic retinopathy."http://purl.org/pe-repo/ocde/ford#1.02.00“Estrategia para la detección de tipos de enfermedades oculares usando red neuronal SOM“info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:UWIENER-Institucionalinstname:Universidad Privada Norbert Wienerinstacron:UWIENERPublicationORIGINALFP578.pdfFP578.pdfapplication/pdf994558https://dspace-uwiener.metabuscador.org/bitstreams/93d9832b-25a4-4b4d-9cf9-7c7c1b199072/download351482ced9cf59c78664834e2e7db7feMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://dspace-uwiener.metabuscador.org/bitstreams/2d8545d9-c02a-4156-89c6-d19351f1ea45/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTFP578.pdf.txtFP578.pdf.txtExtracted texttext/plain37927https://dspace-uwiener.metabuscador.org/bitstreams/a49208e0-9307-4c75-8bfd-07d3db381d06/downloadd559081cdc5b3e85f396d7f248c3fd33MD53THUMBNAILFP578.pdf.jpgFP578.pdf.jpgGenerated Thumbnailimage/jpeg8128https://dspace-uwiener.metabuscador.org/bitstreams/fc940b0c-0b68-4321-9aa1-ffdf26144266/download1f6bd39fe509334b6ed08cf341dddee9MD5420.500.13053/7949oai:dspace-uwiener.metabuscador.org:20.500.13053/79492024-12-13 14:35:30.994https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://dspace-uwiener.metabuscador.orgRepositorio Institucional de la Universidad de Wienerbdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.8851595
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).