Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge

Descripción del Articulo

Visual inspection is a common method for detecting structural damage, but has limitations in terms of subjectivity, time, and access. This research proposes an innovative approach to identify cracks using a 3D model generated from photographs of an unmanned aerial vehicle (UAV) and the use of a conv...

Descripción completa

Detalles Bibliográficos
Autores: Alfaro, Mary C., Vidal, Rodrigo S., Delgadillo, Rick M., Moya, Luis, Casas, Joan R.
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/684655
Enlace del recurso:http://hdl.handle.net/10757/684655
Nivel de acceso:acceso abierto
Materia:3D model
binary segmentation
bridge
convolutional neural networks
deep learning
structural damage detection
id UUPC_8453651ebef8e7b14f57df9b694da6e3
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/684655
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
title Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
spellingShingle Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
Alfaro, Mary C.
3D model
binary segmentation
bridge
convolutional neural networks
deep learning
structural damage detection
title_short Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
title_full Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
title_fullStr Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
title_full_unstemmed Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
title_sort Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
author Alfaro, Mary C.
author_facet Alfaro, Mary C.
Vidal, Rodrigo S.
Delgadillo, Rick M.
Moya, Luis
Casas, Joan R.
author_role author
author2 Vidal, Rodrigo S.
Delgadillo, Rick M.
Moya, Luis
Casas, Joan R.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Alfaro, Mary C.
Vidal, Rodrigo S.
Delgadillo, Rick M.
Moya, Luis
Casas, Joan R.
dc.subject.es_PE.fl_str_mv 3D model
binary segmentation
bridge
convolutional neural networks
deep learning
structural damage detection
topic 3D model
binary segmentation
bridge
convolutional neural networks
deep learning
structural damage detection
description Visual inspection is a common method for detecting structural damage, but has limitations in terms of subjectivity, time, and access. This research proposes an innovative approach to identify cracks using a 3D model generated from photographs of an unmanned aerial vehicle (UAV) and the use of a convolutional neural network (CNN). These networks are effective in detecting complex patterns, improving the accuracy and efficiency of damage identification based on simple visual inspection. The case study is the old Villena Rey bridge in Lima, Peru. The methodology covers (i) the development of a 3D model of the bridge structure, (ii) the extraction of photographs of the model and its binary segmentation, (iii) the application of deep learning through the training and testing phase of a CNN to achieve crack detection in photographs, and (iv) damage location within the 3D model. An 88.4% accuracy was achieved in crack detection, identifying 18 damage points, of which 3 turned out to be false positives. Additionally, it was determined that the left pillar in the southern area of the bridge presented the highest concentration of damage, which underlines the effectiveness of the method used.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-04-28T05:31:38Z
dc.date.available.none.fl_str_mv 2025-04-28T05:31:38Z
dc.date.issued.fl_str_mv 2025-02-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3390/infrastructures10020033
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/684655
dc.identifier.eissn.none.fl_str_mv 24123811
dc.identifier.journal.es_PE.fl_str_mv Infrastructures
dc.identifier.eid.none.fl_str_mv 2-s2.0-85219197357
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85219197357
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.3390/infrastructures10020033
24123811
Infrastructures
2-s2.0-85219197357
SCOPUS_ID:85219197357
0000 0001 2196 144X
url http://hdl.handle.net/10757/684655
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Infrastructures
dc.source.volume.none.fl_str_mv 10
dc.source.issue.none.fl_str_mv 2
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/5/infrastructures-10-00033-v2.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/4/infrastructures-10-00033-v2.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/1/infrastructures-10-00033-v2.pdf
bitstream.checksum.fl_str_mv 2aa8861d63927c3b3c61a7a04ff6d8a4
689f0ebd1e7da989c2f4a0f879c3aad7
8a4605be74aa9ea9d79846c1fba20a33
0175ea4a2d4caec4bbcc37e300941108
89213fab176141994d288cb71422595d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187434497966080
spelling c26f58526b27a609a1b52e5b9f5ae2a03005d350e58cd936a313542c2f26c479c6a30037a2d012d9016cd087e09ef9de655e2a500b9bc92f42fcfb9d04516df0216d8a4a3500bd28d3066c8cafd6d2c3151b80844a79500Alfaro, Mary C.Vidal, Rodrigo S.Delgadillo, Rick M.Moya, LuisCasas, Joan R.2025-04-28T05:31:38Z2025-04-28T05:31:38Z2025-02-0110.3390/infrastructures10020033http://hdl.handle.net/10757/68465524123811Infrastructures2-s2.0-85219197357SCOPUS_ID:852191973570000 0001 2196 144XVisual inspection is a common method for detecting structural damage, but has limitations in terms of subjectivity, time, and access. This research proposes an innovative approach to identify cracks using a 3D model generated from photographs of an unmanned aerial vehicle (UAV) and the use of a convolutional neural network (CNN). These networks are effective in detecting complex patterns, improving the accuracy and efficiency of damage identification based on simple visual inspection. The case study is the old Villena Rey bridge in Lima, Peru. The methodology covers (i) the development of a 3D model of the bridge structure, (ii) the extraction of photographs of the model and its binary segmentation, (iii) the application of deep learning through the training and testing phase of a CNN to achieve crack detection in photographs, and (iv) damage location within the 3D model. An 88.4% accuracy was achieved in crack detection, identifying 18 damage points, of which 3 turned out to be false positives. Additionally, it was determined that the left pillar in the southern area of the bridge presented the highest concentration of damage, which underlines the effectiveness of the method used.Consejo Nacional de Ciencia, Tecnología e Innovación TecnológicaODS 4: Educación de calidadODS 3: Salud y bienestarODS 5: Igualdad de géneroapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)info:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/3D modelbinary segmentationbridgeconvolutional neural networksdeep learningstructural damage detectionStructural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridgeinfo:eu-repo/semantics/articleInfrastructures102reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2025-04-28T05:31:39ZTHUMBNAILinfrastructures-10-00033-v2.pdf.jpginfrastructures-10-00033-v2.pdf.jpgGenerated Thumbnailimage/jpeg96373https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/5/infrastructures-10-00033-v2.pdf.jpg2aa8861d63927c3b3c61a7a04ff6d8a4MD55falseTEXTinfrastructures-10-00033-v2.pdf.txtinfrastructures-10-00033-v2.pdf.txtExtracted texttext/plain89608https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/4/infrastructures-10-00033-v2.pdf.txt689f0ebd1e7da989c2f4a0f879c3aad7MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52falseORIGINALinfrastructures-10-00033-v2.pdfinfrastructures-10-00033-v2.pdfapplication/pdf9500654https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/1/infrastructures-10-00033-v2.pdf89213fab176141994d288cb71422595dMD51true10757/684655oai:repositorioacademico.upc.edu.pe:10757/6846552025-06-26 12:57:07.383Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).