Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge
Descripción del Articulo
Visual inspection is a common method for detecting structural damage, but has limitations in terms of subjectivity, time, and access. This research proposes an innovative approach to identify cracks using a 3D model generated from photographs of an unmanned aerial vehicle (UAV) and the use of a conv...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/684655 |
Enlace del recurso: | http://hdl.handle.net/10757/684655 |
Nivel de acceso: | acceso abierto |
Materia: | 3D model binary segmentation bridge convolutional neural networks deep learning structural damage detection |
id |
UUPC_8453651ebef8e7b14f57df9b694da6e3 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/684655 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge |
title |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge |
spellingShingle |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge Alfaro, Mary C. 3D model binary segmentation bridge convolutional neural networks deep learning structural damage detection |
title_short |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge |
title_full |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge |
title_fullStr |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge |
title_full_unstemmed |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge |
title_sort |
Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridge |
author |
Alfaro, Mary C. |
author_facet |
Alfaro, Mary C. Vidal, Rodrigo S. Delgadillo, Rick M. Moya, Luis Casas, Joan R. |
author_role |
author |
author2 |
Vidal, Rodrigo S. Delgadillo, Rick M. Moya, Luis Casas, Joan R. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Alfaro, Mary C. Vidal, Rodrigo S. Delgadillo, Rick M. Moya, Luis Casas, Joan R. |
dc.subject.es_PE.fl_str_mv |
3D model binary segmentation bridge convolutional neural networks deep learning structural damage detection |
topic |
3D model binary segmentation bridge convolutional neural networks deep learning structural damage detection |
description |
Visual inspection is a common method for detecting structural damage, but has limitations in terms of subjectivity, time, and access. This research proposes an innovative approach to identify cracks using a 3D model generated from photographs of an unmanned aerial vehicle (UAV) and the use of a convolutional neural network (CNN). These networks are effective in detecting complex patterns, improving the accuracy and efficiency of damage identification based on simple visual inspection. The case study is the old Villena Rey bridge in Lima, Peru. The methodology covers (i) the development of a 3D model of the bridge structure, (ii) the extraction of photographs of the model and its binary segmentation, (iii) the application of deep learning through the training and testing phase of a CNN to achieve crack detection in photographs, and (iv) damage location within the 3D model. An 88.4% accuracy was achieved in crack detection, identifying 18 damage points, of which 3 turned out to be false positives. Additionally, it was determined that the left pillar in the southern area of the bridge presented the highest concentration of damage, which underlines the effectiveness of the method used. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-04-28T05:31:38Z |
dc.date.available.none.fl_str_mv |
2025-04-28T05:31:38Z |
dc.date.issued.fl_str_mv |
2025-02-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.3390/infrastructures10020033 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/684655 |
dc.identifier.eissn.none.fl_str_mv |
24123811 |
dc.identifier.journal.es_PE.fl_str_mv |
Infrastructures |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85219197357 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85219197357 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.3390/infrastructures10020033 24123811 Infrastructures 2-s2.0-85219197357 SCOPUS_ID:85219197357 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/684655 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Infrastructures |
dc.source.volume.none.fl_str_mv |
10 |
dc.source.issue.none.fl_str_mv |
2 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/5/infrastructures-10-00033-v2.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/4/infrastructures-10-00033-v2.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/1/infrastructures-10-00033-v2.pdf |
bitstream.checksum.fl_str_mv |
2aa8861d63927c3b3c61a7a04ff6d8a4 689f0ebd1e7da989c2f4a0f879c3aad7 8a4605be74aa9ea9d79846c1fba20a33 0175ea4a2d4caec4bbcc37e300941108 89213fab176141994d288cb71422595d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187434497966080 |
spelling |
c26f58526b27a609a1b52e5b9f5ae2a03005d350e58cd936a313542c2f26c479c6a30037a2d012d9016cd087e09ef9de655e2a500b9bc92f42fcfb9d04516df0216d8a4a3500bd28d3066c8cafd6d2c3151b80844a79500Alfaro, Mary C.Vidal, Rodrigo S.Delgadillo, Rick M.Moya, LuisCasas, Joan R.2025-04-28T05:31:38Z2025-04-28T05:31:38Z2025-02-0110.3390/infrastructures10020033http://hdl.handle.net/10757/68465524123811Infrastructures2-s2.0-85219197357SCOPUS_ID:852191973570000 0001 2196 144XVisual inspection is a common method for detecting structural damage, but has limitations in terms of subjectivity, time, and access. This research proposes an innovative approach to identify cracks using a 3D model generated from photographs of an unmanned aerial vehicle (UAV) and the use of a convolutional neural network (CNN). These networks are effective in detecting complex patterns, improving the accuracy and efficiency of damage identification based on simple visual inspection. The case study is the old Villena Rey bridge in Lima, Peru. The methodology covers (i) the development of a 3D model of the bridge structure, (ii) the extraction of photographs of the model and its binary segmentation, (iii) the application of deep learning through the training and testing phase of a CNN to achieve crack detection in photographs, and (iv) damage location within the 3D model. An 88.4% accuracy was achieved in crack detection, identifying 18 damage points, of which 3 turned out to be false positives. Additionally, it was determined that the left pillar in the southern area of the bridge presented the highest concentration of damage, which underlines the effectiveness of the method used.Consejo Nacional de Ciencia, Tecnología e Innovación TecnológicaODS 4: Educación de calidadODS 3: Salud y bienestarODS 5: Igualdad de géneroapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)info:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/3D modelbinary segmentationbridgeconvolutional neural networksdeep learningstructural damage detectionStructural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning on a Reinforced Concrete Arch Bridgeinfo:eu-repo/semantics/articleInfrastructures102reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2025-04-28T05:31:39ZTHUMBNAILinfrastructures-10-00033-v2.pdf.jpginfrastructures-10-00033-v2.pdf.jpgGenerated Thumbnailimage/jpeg96373https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/5/infrastructures-10-00033-v2.pdf.jpg2aa8861d63927c3b3c61a7a04ff6d8a4MD55falseTEXTinfrastructures-10-00033-v2.pdf.txtinfrastructures-10-00033-v2.pdf.txtExtracted texttext/plain89608https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/4/infrastructures-10-00033-v2.pdf.txt689f0ebd1e7da989c2f4a0f879c3aad7MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/2/license_rdf0175ea4a2d4caec4bbcc37e300941108MD52falseORIGINALinfrastructures-10-00033-v2.pdfinfrastructures-10-00033-v2.pdfapplication/pdf9500654https://repositorioacademico.upc.edu.pe/bitstream/10757/684655/1/infrastructures-10-00033-v2.pdf89213fab176141994d288cb71422595dMD51true10757/684655oai:repositorioacademico.upc.edu.pe:10757/6846552025-06-26 12:57:07.383Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).